Synthetic Turbulence Generation for a Zonal RANS-LES Method

  • Benedikt Roidl
  • Alibek Issakhov
  • Matthias Meinke
  • Wolfgang Schröder
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)

Abstract

A synthetic turbulence generation (STG) method for flows at low and high Reynolds and Mach numbers to provide LES inflow boundary conditions of zonal Reynolds-averaged Navier-Stokes (RANS)- large-eddy simulation (LES) method simulations is presented. The present method separates the LES inflow plane into three sections where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Depending on the wall-normal position in the boundary layer the local flow Reynolds and Mach number specific time, length, and velocity scales with different vorticity content are imposed on the LES inflow plane. The STG method is assessed by comparing the resulting skin-friction, velocity, and Reynolds-stress distributions of zonal RANS-LES simulations of subsonic and supersonic flat plate flows with available pure LES, DNS, and experimental data. It is shown that for the presented flow cases a satisfactory agreement within a short RANS-to-LES transition of two boundary-layer thicknesses is obtained.

Keywords

Turbulent Boundary Layer Reynolds Shear Stress Displacement Thickness Supersonic Boundary Layer Streamwise Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    del Alamo, J.C., Jimenez, J., Zandonade, P., Moser, R.D.: Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561(329) (2006)Google Scholar
  2. 2.
    Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dynamics Research 10, 199–228 (1992)CrossRefGoogle Scholar
  3. 3.
    DeGraaff, D.B., Eaton, J.K.: Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319–346 (2000)MATHCrossRefGoogle Scholar
  4. 4.
    El-Askary, W., Schröder, W., Meinke, M.: LES of compressible wall-bounded flows. AIAA Paper (2003-3554) (2003)Google Scholar
  5. 5.
    Fares, E., Schröder, W.: A general one-equation turbulence model for free shear and wall-bounded flows. Flow, Turbulence and Combustion 73, 187–215 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Fröhlich, J., van Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerospace Sci. 44, 349–377 (2008)CrossRefGoogle Scholar
  7. 7.
    Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. International Journal of Heat and Fluid Flow 27, 585–593 (2006)CrossRefGoogle Scholar
  8. 8.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Jeong, J., Hussain, F., Schoppa, W., Kim, J.: Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332(185) (1997)Google Scholar
  10. 10.
    Keating, A., de Prisco, G., Piomelli, U.: Interface conditions for hybrid RANS/LES calculation. International Journal of Heat and Fluid Flow 27, 777–788 (2006)CrossRefGoogle Scholar
  11. 11.
    Knight, D.D., Yan, H., Panaras, A.G., Zheltovodov, A.A.: Advances in CFD prediction of shock wave turbulent boundary layer interactions. Progress in Aerospace Science 39, 121–184 (2003)CrossRefGoogle Scholar
  12. 12.
    Leschziner, M., Drikakis, D.: Turbulence modelling and turbulent-flow computation in aeronautics. Aeronautical Journal 106(1061), 349–383 (2002)Google Scholar
  13. 13.
    Liou, M.S., Steffen Jr, C.J.: A New Flux Splitting Scheme. J. Comp. Phys. 107, 23–39 (1993)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Marusic, I.: On the role of large-scale structures in wall turbulence. Physics of Fluids 13(735) (2001)Google Scholar
  15. 15.
    Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second-and sixth-order methods for large-eddy simulations. Computers and Fluids 31, 695–718 (2002)MATHCrossRefGoogle Scholar
  16. 16.
    Pamiès, M., Weiss, P.E., Garnier, E., Deck, S., Sagaut, P.: Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Physics of Fluids 16(045103) (2009)Google Scholar
  17. 17.
    Pirozzoli, S., Grasso, F., Gatski, T.B.: Direct numerical simulation and analysis of spatially evolving supersonic turbulent boundary layer at M = 2.25. Physics of Fluids 16(3), 530–545 (2004)CrossRefGoogle Scholar
  18. 18.
    de Prisco, G., Piomelli, U., Keating, A.: Improved turbulence generation techniques for hybrid RANS/LES calculations. Journal of Turbulence 9(5), 1–20 (2008)Google Scholar
  19. 19.
    Roidl, B., Meinke, M., Schröder, W.: Zonal RANS/LES computation of transonic airfoil flow. AIAA Paper (2011-3974) (2011)Google Scholar
  20. 20.
    Roidl, B., Meinke, M., Schröder, W.: A zonal RANS/LES method for compressible flows. Submittet to Computers and Fluids (2011)Google Scholar
  21. 21.
    Smits, A.J., Dussauge, J.P.: Turbulent Shear Layers in Supersonic Flow, 2nd edn. Springer, New York (2006)Google Scholar
  22. 22.
    Spalart, P.: Direct simulation of a turbulent boundary layer up to re θ = 1410. J. Fluid Mech. 187, 61–98 (1988)MATHCrossRefGoogle Scholar
  23. 23.
    Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Advances on DNS/LES, pp. 137–147. Greyden Press, Columbus (1997)Google Scholar
  24. 24.
    Spille, A., Kaltenbach, H.J.: Generation of turbulent inflow data with a prescribed shear-stress profile. In: Third AFSOR Conference on DNS and LES (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benedikt Roidl
    • 1
  • Alibek Issakhov
    • 2
  • Matthias Meinke
    • 1
  • Wolfgang Schröder
    • 1
  1. 1.Institute of AerodynamicsRWTH Aachen UniversityAachenGermany
  2. 2.Department of Mechanics and MathematicsAl-Faraby Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations