Advertisement

Interfacing Boundary Conditions towards Zonal RANS/LES

  • Aurelien Hemon
  • Song Fu
  • Liang Shao
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)

Abstract

An improvement of the Vortex Method proposed by Sergent [19] and Mathey et al. [14] is presented. The method can be used to generate inflow boundary conditions for a LES or instantaneous interfacing conditions in a zonal RANS/LES simulation. The method is tested in a channel flow case at Re τ  = 590 and compared to a bi-periodic LES case. Analysis of the generated field and its evolution in the streamwise direction is provided using the vorticity fluctuations and the velocity-derivative skewness and shows this method as viable and cost-effective.

Keywords

Large Eddy Simulation Direct Numerical Simulation Reynolds Stress Vortex Method Vortex Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beale, J.T., Majda, A.: Vortex methods. I: Convergence in three dimensions. Mathematics of Computation 39(159), 1–27 (1982)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Beale, J.T., Majda, A.: Vortex methods. II: Higher order accuracy in two and three dimensions. Mathematics of Computation 39(159), 29–52 (1982)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Boudet, J., Caro, J., Shao, L., Leveque, E.: Numerical studies towards practical large-eddy simulation. Journal of Thermal Science 16(4), 328–336 (2007)CrossRefGoogle Scholar
  4. 4.
    Comte-Bellot, G.: Ecoulement Turbulent Entre Deux Parois Paralleles. Technical report, Ministere de l’Air (1965)Google Scholar
  5. 5.
    Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, Netherlands (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Herpin, S.: Study of the influence of the Reynolds number on the organization of wall-bounded turbulence. PhD thesis, Ecole Centrale de Lille (2009)Google Scholar
  7. 7.
    Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. International Journal of Heat and Fluid Flow 27(4), 585–593 (2006)CrossRefGoogle Scholar
  8. 8.
    Keating, A., Piomelli, U., Balaras, E.: A priori and a posteriori tests of inflow conditions for large-eddy simulation. Physics of Fluids 16(12) (2004)Google Scholar
  9. 9.
    Kondo, K., Murakami, S., Mochida, A.: Generation of velocity fluctuations for inflow boundary condition of LES. Journal of Wind Engineering and Industrial Aerodynamics 67-8, 51–64 (1997)CrossRefGoogle Scholar
  10. 10.
    Le, F., Boudet, J., Shao, L.: Les échanges inter-échelles en simulation des grandes échelles. In: 18ème Congrès Français de Mécanique, Grenoble 2007. AFM (2007)Google Scholar
  11. 11.
    Leonard, A.: Vortex Methods for Flow Simulation. Journal of Computational Physics 37(3), 289–335 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Leschziner, M.A., Tessicini, F.: Application. In: Separated Flow Behind an Aerofoil Trailing Edge without Camber, pp. 208–216. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Lund, T.: Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations. Journal of Computational Physics 140(2), 233–258 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Mathey, F., Cokljat, D., Bertoglio, J.P., Sergent, E.: Assessment of the vortex method for Large Eddy Simulation inlet conditions. Progress in Computational Fluid Dynamics 6(1-3), 58–67 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re-tau=590. Physics of Fluids 11(4), 943–945 (1999)zbMATHCrossRefGoogle Scholar
  16. 16.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62(3), 183–200 (1999)zbMATHCrossRefGoogle Scholar
  17. 17.
    Pope, S.B.: Turbulent flows. Cambridge University Press (2000)Google Scholar
  18. 18.
    Quéméré, P., Sagaut, P.: Zonal multi-domain RANS/LES simulations of turbulent flows. International Journal for Numerical Methods in Fluids 40(7), 903–925 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Sergent, E.: Vers une methodologie de couplage entre la Simulation des Grandes Echelles et les modeles statistiques. PhD thesis, Ecole Centrale de Lyon (2002)Google Scholar
  20. 20.
    Tanahashi, M., Kang, S.J., Miyamoto, T., Shiokawa, S., Miyauchi, T.: Scaling law of fine scale eddies in turbulent channel flows up to Reτ= 800. International Journal of Heat and Fluid Flow 25(3), 331–340 (2004)CrossRefGoogle Scholar
  21. 21.
    Tavoularis, S., Corrsin, S., Bennett, J.C.: Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence. Journal of Fluid Mechanics 88, 63–69 (1978)CrossRefGoogle Scholar
  22. 22.
    Terracol, M.: A Zonal RANS/LES Approach for Noise Sources Prediction. Flow, Turbulence and Combustion 77(1-4), 161–184 (2006)zbMATHCrossRefGoogle Scholar
  23. 23.
    Wilcox, D.C.: Turbulence modeling for CFD. DCW industries La Canada, CA (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.LMFAEcole Centrale de LyonEcully CedexFrance
  2. 2.LASTTsinghua UniversityBeijingChina

Personalised recommendations