Advertisement

Constrained Large Eddy Simulation of Wall-Bounded Turbulent Flows

  • Shiyi Chen
  • Yipeng Shi
  • Zuoli Xiao
  • Zhenhua Xia
  • Jianchun Wang
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)

Abstract

We present a novel simulation tool-constrained large eddy simulation (CLES), for numerical experiments on the wall-bounded turbulent flows. Different from the traditional large eddy simulation(LES) and the available hybrid RANS/LES approaches, the CLES method computes the whole flow domain by solving the LES equations with a Reynolds-stress-constrained (RSC) subgrid-scale (SGS) stress model in the near-wall region and a traditional SGS stress model in the rest.The CLES approach is validated by simulating the turbulent channel flow and flow around a circular cylinder. With the same grid resolutions, CLES can successfully simulate all these flow regimes as well as DES and other available methods. For the case of attached flows, CLES is able to eliminate the non-physical Log-Layer Mismatch problem in traditional hybrid RANS/LES methods successfully, and to predict mean velocity profile, turbulent stresses and skin friction coefficient more accurately compared with the DES. For the case of detached flows, the performance of CLES is comparable to DES.

Keywords

Large Eddy Simulation Circular Cylinder Reynolds Stress Delayed Detach Eddy Simulation Large Eddy Simulation Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    del Alamo, J.C., Jimenez, J., Zandonade, P., Moser, R.D.: Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004)zbMATHCrossRefGoogle Scholar
  2. 2.
    Davidson, L., Peng, S.H.: Hybrid LES-RANS modelling: a one-equation sgs model combined with a k − ω model for predicting recirculating flows. Int. J. Numer. Methods Fluids 43(9), 1003–1018 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Dong, S., Karniadakis, G.E., Ekmekci, A., Rockwell, D.: A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. J. Fluid Mech. 569, 185–207 (2006)zbMATHCrossRefGoogle Scholar
  4. 4.
    Keating, A., De Prisco, G., Piomelli, U.: Interface conditions for hybrid RANS/LES calculations. Int. J. Heat Fluid Flow 27, 777–788 (2006)CrossRefGoogle Scholar
  5. 5.
    Kraichnan, R.H.: Theoretical Approaches to Turbulence. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds.) Applied Mathematical Sciences Series, vol. 58, p. 91. Springer (1985)Google Scholar
  6. 6.
    Kraichnan, R.H., Chen, S.: Is there a statistical mechanics of turbulence? Physica D 37, 160–172 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Meneveau, C.: Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental tests. Phys. Fluids 6(2), 815–833 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)CrossRefGoogle Scholar
  9. 9.
    Norberg, C.: Pressure forces on a circular cylinder in cross flow. In: Eckelmann, H., Graham, J.M., Huerre, P., Monkewitz, P.A. (eds.) Proc. IUTAM Symp. on Bluff Body Wakes, Dynamics and Instabilities, p. 115, 7–1. Springer, Göttinggen (1992)Google Scholar
  10. 10.
    Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349–374 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Piomelli, U., Balaras, E., Pasinato, H., Squires, K.D., Spalart, P.R.: The inner-outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24, 538–550 (2003)CrossRefGoogle Scholar
  12. 12.
    Shi, Y., Xiao, Z., Chen, S.: Constrained subgrid-scale stress model for large eddy simulation. Phys. Fluids 20, 011,701 (2008)CrossRefGoogle Scholar
  13. 13.
    Shur, M., Spalart, P.R., Strelets, M., Travin, A.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRefGoogle Scholar
  14. 14.
    Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefGoogle Scholar
  15. 15.
    Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. Rech. Aerosp. 1, 5–21 (1994)Google Scholar
  16. 16.
    Tessicini, F., Temmerman, L., Leschziner, M.A.: Approximate near-wall treatments based on zonal and hybrid RANS/LES methods for LES at high reynolds numbers. Int. J. Heat Fluid Flow 27, 789–799 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shiyi Chen
    • 1
  • Yipeng Shi
    • 1
  • Zuoli Xiao
    • 1
  • Zhenhua Xia
    • 2
  • Jianchun Wang
    • 2
  1. 1.SKLTCS & CAPT, College of EngineeringPeking UniversityBeijingChina
  2. 2.SKLTCS, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations