Torsion Bar

  • Andreas Öchsner
  • Markus Merkel


The basic load type torsion for a prismatic bar is described with the help of a torsion bar. First, the basic equations known from the strength of materials will be introduced. Subsequently, the torsion bar will be introduced, according to the common definitions for the torque and angle variables, which are used in the handling of the FE method. The explanations are limited to torsion bars with circular cross-section. The stiffness matrix will be derived according to the procedure for the tension bar [1, 2, 3, 4, 5, 6].


Shear Strain Stiffness Matrix Body Axis Torsional Rigidity Torsional Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Betten J (2004) Finite Elemente für Ingenieure 1: Grundlagen. Matrixmethoden, Elastisches Kontinuum, Springer-Verlag, BerlinGoogle Scholar
  2. 2.
    Betten J (2004) Finite Elemente für Ingenieure 2: Variationsrechnung, Energiemethoden, Näherungsverfahren, Nichtlinearitäten, Numerische Integrationen, Springer-Verlag, BerlinGoogle Scholar
  3. 3.
    Gross D, Hauger W, Schröder J, Wall WA (2009) Technische Mechanik 2: Elastostatik. Springer-Verlag, BerlinGoogle Scholar
  4. 4.
    Gross D, Hauger W, Schröder J, Werner EA (2008) Hydromechanik. Elemente der Höheren Mechanik, Numerische Methoden, Springer-Verlag, BerlinGoogle Scholar
  5. 5.
    Klein B (2000) FEM. Grundlagen und Anwendungen der Finite-Elemente-Methode, Vieweg-Verlag, WiesbadenGoogle Scholar
  6. 6.
    Kuhn G, Winter W (1993) Skriptum Festigkeitslehre Universität Erlangen-NürnbergGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering, Department of Applied MechanicsUniversity of Technology Malaysia—UTMSkudaiMalaysia
  2. 2.Department of Mechanical EngineeringAalen University of Applied SciencesAalenGermany

Personalised recommendations