The Edge-Centered Surface Area of the Arrangement Graph

  • Eddie Cheng
  • Ke Qiu
  • Zhizhang Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7402)


We suggest the notion of the surface area centered at an edge for an interconnection network, which generalizes the usual notion of surface area of a network centered at a vertex. Following an elementary approach, we derive an explicit expression of the edge-centered surface area of the arrangement graph.


Edge-centered surface area arrangement graph combinatorial studies interconnection networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akers, S.B., Krishnamurthy, B.: A group theoretic model for symmetric interconnection networks. IEEE Trans. on Computers 38, 555–566 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cheng, E., Qiu, K., Shen, Z.: On deriving explicit formulas of the surface areas for the arrangement graphs and some of the related graphs. International Journal of Computer Mathematics 87, 2903–2914 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cheng, E., Qiu, K., Shen, Z.: A generating function approach to the edge surface area of the arrangement graphs. To appear in the Computer JournalGoogle Scholar
  4. 4.
    Day, K., Tripathi, A.: Arrangement graphs: a class of generalized star graphs. Information Processing Letters 42, 235–241 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fertin, G., Raspaud, A.: k-Neighbourhood broadcasting. In: 8th International Colloquium on Structural Information and Communication Complexity, pp. 133–146. Carleton Scientific, Ontario (2001)Google Scholar
  6. 6.
    Imani, N., Sarbazi-Azad, H., Akl, S.G.: On some combinatorial properties of the star graph. In: 2005 International Symposium on Parallel Architecture, Algorithms and Networks, pp. 58–65. IEEE Computer Society, California (2005)CrossRefGoogle Scholar
  7. 7.
    Jwo, J.S., Lakshmivarahan, S., Dhall, S.K.: A new class of interconnection networks based on the alternating graph. Networks 23, 315–326 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Riordan, J.: An Introduction to Combinatorial Analysis. Wiley, New York (1980)zbMATHGoogle Scholar
  9. 9.
    Sarbazi-Azad, H., Ould-Khaoua, M., Mackenzie, L.M., Akl, S.G.: On some properties of k-ary n-cubes. In: Eighth International Conference on Parallel and Distributed Systems, pp. 517–524. IEEE Computer Society, California (2001)CrossRefGoogle Scholar
  10. 10.
    Shen, Z., Qiu, K., Cheng, E.: On the surface area of the (n, k)-star graph. Theoretical Computer Science 410, 5481–5490 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Stewart, I.: A general technique to establish the asymptotic conditional diagnosability of interconnection networks (2011) (manuscript)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eddie Cheng
    • 1
  • Ke Qiu
    • 2
  • Zhizhang Shen
    • 3
  1. 1.Dept. of Mathematics and StatisticsOakland UniversityUSA
  2. 2.Dept. of Computer ScienceBrock UniversityCanada
  3. 3.Dept. of Computer Science and TechnologyPlymouth State UniversityUSA

Personalised recommendations