Advertisement

Stretch Factor in Wireless Sensor Networks with Directional Antennae

  • Evangelos Kranakis
  • Fraser MacQuarrie
  • Oscar Morales-Ponce
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7402)

Abstract

Traditional study of wireless sensor networks has relied on the assumption that sensors transmit and receive using an omnidirectional antenna. There has been some recent study using a model where sensors transmit using a directional antenna. This study has focused on the problem of finding an optimal transmission range so that there exists an orientation of the antennae at each sensor which creates a strongly connected communication network. This is known as the Antenna Orientation Problem for Strong Connectivity. In this paper we examine a similar problem: we wish to optimize not only the transmission range, but also the hop-stretch factor of the communication network (in relation to the omnidirectional model). We refer to this as the Antenna Orientation Problem with Constant Stretch Factor. We present approximations to this problem for antennae with angles π/2 ≤ φ ≤ 2π.

Keywords

Antenna Orientation Problem Connectivity Directional Antenna Stretch Factor Wireless Sensor Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackerman, E., Gelander, T., Pinchasi, R.: Ice-creams and wedge graphs. Arxiv preprint arXiv:1106.0855 (2011)Google Scholar
  2. 2.
    Aschner, R., Katz, M.J., Morgenstern, G.: Symmetric connectivity with directional antennas. Arxiv preprint arXiv:1108.0492 (2011)Google Scholar
  3. 3.
    Bose, P., Carmi, P., Damian, M., Flatland, R., Katz, M., Maheshwari, A.: Switching to directional antennas with constant increase in radius and hop distance. In: Proceedings of Workshop on Algorithms and Data Structures, pp. 134–146 (2011)Google Scholar
  4. 4.
    Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in Wireless Networks with Directional Antennae. In: Proceedings of 20th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2008), Munich, Germany, June 14-16, pp. 344–351 (2008)Google Scholar
  5. 5.
    Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wireless networks with directional antennas. Comput. Geom. Theory Appl. 44(9), 477–485 (2011)zbMATHCrossRefGoogle Scholar
  6. 6.
    Damian, M., Flatland, R.: Connectivity of graphs induced by directional antennas. Arxiv preprint arXiv:1008.3889 (2010)Google Scholar
  7. 7.
    Damian, M., Flatland, R.: Spanning properties of graphs induced by directional antennas. In: Electronic Proc. 20th Fall Workshop on Computational Geometry. Stony Brook University, Stony Brook (2010)Google Scholar
  8. 8.
    Dobrev, S., Kranakis, E., Krizanc, D., Opatrny, J., Ponce, O.M., Stacho, L.: Strong Connectivity in Sensor Networks with Given Number of Directional Antennae of Bounded Angle. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 72–86. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Kranakis, E., Krizanc, D., Modi, A., Morales Ponce, O.: Maintaining connectivity in 3D wireless sensor networks using directional antennae. In: 25th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2011), May 16–20. IEEE Press, Anchorage (2011)Google Scholar
  10. 10.
    Kranakis, E., Krizanc, D., Morales, O.: Maintaining connectivity in sensor networks using directional antennae. In: Nikoletseas, S., Rolim, J. (eds.) Theoretical Aspects of Distributed Computing in Sensor Networks. Springer (2010)Google Scholar
  11. 11.
    Wiese, A., Kranakis, E.: Local Maximal Matching and Local 2-Approximation for Vertex Cover in UDGs (Extended Abstract). In: Coudert, D., Simplot-Ryl, D., Stojmenovic, I. (eds.) ADHOC-NOW 2008. LNCS, vol. 5198, pp. 1–14. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Evangelos Kranakis
    • 1
  • Fraser MacQuarrie
    • 1
  • Oscar Morales-Ponce
    • 1
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations