Advertisement

Speedup of RNA Pseudoknotted Secondary Structure Recurrence Computation with the Four-Russians Method

  • Yelena Frid
  • Dan Gusfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7402)

Abstract

While secondary pseudoknotted structure prediction is computationally challenging, such structures appear to play biologically important roles in both cells and viral RNA [1]. Restricting the class of possible structures and then finding the optimal structure for that restricted class is a common method employed to deal with the computational complexity.

We derive a practical and worst-case speedup algorithm using the Four-Russians method for the O(n 6) time Rivas&Eddy Algorithm [2] describing the broadest set of structures. Fast R&E algorithm finds the optimal Rivas&Eddy fold in O(n 6/q)-time, where q ≥ log(n).

Because the solution matrix produced by Fast R&E algorithm is identical to the one produced by the original Rivas&Eddy algorithm, the contribution of the algorithm lies not only in its stand alone practicality but also in its ability to be implemented alongside heuristic speedups, leading to even greater reductions in time. Our approach is the first to achieve a Ω(log(n)) time speedup without reducing the set of possible Rivas&Eddy pseudoknotted structures. The analysis presented here of the original algorithm could be used to improve other pseudoknot algorithms with similar recurrences.

Keywords

Index Point Secondary Struc Pseudoknotted Structure Compute Matrix Multiple Structural Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Condon, A., Jabbari, H.: Computational prediction of nucleic acid secondary structure: Methods, applications, and challenges. Theor. Comput. Sci. 410(4-5), 294–301 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology 285(5), 2053–2068 (1999)CrossRefGoogle Scholar
  3. 3.
    Torarinsson, E., Havgaard, J.H., Gorodkin, J.: Multiple structural alignment and clustering of RNA sequences. Bioinformatics 23(8), 926–932 (2007)CrossRefGoogle Scholar
  4. 4.
    Rose, D., Hackermuller, J., Washietl, S., Reiche, K., Hertel, J., FindeiSZ, S., Stadler, P., Prohaska, S.: Computational rnomics of drosophilids. BMC Genomics 8(1), 406 (2007)CrossRefGoogle Scholar
  5. 5.
    Torarinsson, E., Yao, Z., Wiklund, E.D., Bramsen, J.B., Hansen, C., Kjems, J., Tommerup, N., Ruzzo, W.L., Gorodkin, J.: Comparative genomics beyond sequence-based alignments: RNA structures in the encode regions. Genome Res. 18(2), 242–251 (2008)CrossRefGoogle Scholar
  6. 6.
    Liu, C., Song, Y., Shapiro, L.: RNA Folding Including Pseudoknots: A New Parameterized Algorithm and Improved Upper Bound. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 310–322. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matchings. SIAM Journal on Applied Mathematics 35(1), 68–82 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bulletin of Mathematical Biology 46(4), 591–621 (1984)zbMATHGoogle Scholar
  9. 9.
    Waterman, M.S., Smith, T.F.: RNA secondary structure: A complete mathematical analysis. Math. Biosc. 42, 257–266 (1978)zbMATHCrossRefGoogle Scholar
  10. 10.
    Frid, Y., Gusfield, D.: A Simple, Practical and Complete \(O(\frac{n^3}{ \log n})\)-Time Algorithm for RNA Folding Using the Four-Russians Speedup. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 97–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based models. Journal of Computational Biology 7(3-4), 409–427 (2000)CrossRefGoogle Scholar
  12. 12.
    Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104(1-3), 45–62 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. Journal of Computational Chemistry 24(13), 1664–1677 (2003)CrossRefGoogle Scholar
  14. 14.
    Mathews, D.H., Turner, D.H.: Prediction of RNA secondary structure by free energy minimization. Current Opinion in Structural Biology 16(3), 270–278 (2006); Nucleic acids/Sequences and topology - Anna Marie Pyle and Jonathan Widom/Nick V Grishin and Sarah A TeichmannCrossRefGoogle Scholar
  15. 15.
    Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5(1), 104 (2004)CrossRefGoogle Scholar
  16. 16.
    Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science 210(2), 277–303 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Deogun, J.S., Donts, R., Komina, O., Ma, F.: RNA secondary structure prediction with simple pseudoknots. In: Chen, Y.-P.P. (ed.) APBC. CRPIT, vol. 29, pp. 239–246. Australian Computer Society (2004)Google Scholar
  18. 18.
    Cao, S., Chen, S.-J.: Predicting structures and stabilities for h-type pseudoknots with interhelix loops. RNA 15(4), 696–706 (2009)CrossRefGoogle Scholar
  19. 19.
    Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theoretical Computer Science 320(1), 35–50 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Saule, C., Régnier, J.-M.S.M., Denise, A.: Counting RNA pseudoknotted structures. Journal of Computational Biology 18(10), 1339–1351 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Möhl, M., Salari, R., Will, S., Backofen, R., Sahinalp, S.C.: Sparsification of RNA Structure Prediction Including Pseudoknots. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 40–51. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Pinhas, T., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Edit Distance with Duplications and Contractions Revisited. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 441–454. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Williams, R.: Matrix-vector multiplication in sub-quadratic time (some preprocessing required). In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 995–1001. SIAM (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yelena Frid
    • 1
  • Dan Gusfield
    • 1
  1. 1.Department of Computer ScienceU.C. DavisUSA

Personalised recommendations