On the Generalized Multiway Cut in Trees Problem

  • Hong Liu
  • Peng Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7402)

Abstract

Given a tree T = (V, E) with n vertices and a collection of terminal sets D = {S 1, S 2, …, S c }, where each S i is a subset of V and c is a constant, the generalized Multiway Cut in trees problem (GMWC(T)) asks to find a minimum size edge subset E′ ⊆ E such that its removal from the tree separates all terminals in S i from each other for each terminal set S i . The GMWC(T) problem is a natural generalization of the classical Multiway Cut in trees problem, and has an implicit relation to the Densest k-Subgraph problem. In this paper, we show that the GMWC(T) problem is fixed-parameter tractable by giving an O(n 2 + 2 k ) time algorithm, where k is the size of an optimal solution, and the GMWC(T) problem is polynomial time solvable when the problem is restricted in paths. We also discuss some heuristics for the GMWC(T) problem.

Keywords

Search Tree Internal Vertex Dynamic Programming Approach Input Tree Greedy Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities – an O(n 1/4) approximation for densest k-subgraph. In: Schulman, L. (ed.) Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, STOC, pp. 201–210. ACM (2010)Google Scholar
  2. 2.
    Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Fortnow, L., Vadhan, S. (eds.) Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC, pp. 459–468. ACM (2011)Google Scholar
  4. 4.
    Chen, J.-E., Liu, Y., Lu, S.-J.: An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica 55, 1–13 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chopra, S., Rao, M.: On the Multiway Cut Polyhedron. Networks 21, 51–89 (1991)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Costa, M.-C., Billionnet, A.: Multiway cut and integer flow problems in trees. Electronic Notes in Discrete Mathematics 17, 105–109 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23, 864–894 (1994)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithm for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for multicut in trees. Networks 46(3), 124–135 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding algorithms for a geometric embedding of minimum multiway cut. Mathematics of Operations Research 29(3), 436–461 (2004)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. Journal of Computer and System Sciences 74(3), 335–349 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Manokaran, R., Naor, J., Raghavendra, P., Schwartz, R.: SDP gaps and UGC hardness for multiway cut, 0-extension, and metric labeling. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC, pp. 11–20. ACM (2008)Google Scholar
  13. 13.
    Mestre, J.: Lagrangian relaxation and partial cover (extended abstract). In: Albers, S., Weil, P. (eds.) Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 539–550. LIPIcs 1 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)Google Scholar
  14. 14.
    Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Information Processing Letters 73, 125–129 (2000)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Xiao, M.-Y.: Simple and improved parameterized algorithms for multiterminal cuts. Theory of Computing Systems 46, 723–736 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Zhang, P.: Approximating Generalized Multicut on Trees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 799–808. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Zhang, P., Zhu, D.-M., Luan, J.-F.: An approximation algorithm for the generalized k-Multicut problem. Discrete Applied Mathematics 160(7-8), 1240–1247 (2012)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hong Liu
    • 1
  • Peng Zhang
    • 1
  1. 1.School of Computer Science and TechnologyShandong UniversityJinanChina

Personalised recommendations