Advertisement

A Compositional Minimization Approach for Large Asynchronous Design Verification

  • Hao Zheng
  • Emmanuel Rodriguez
  • Yingying Zhang
  • Chris Myers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7385)

Abstract

This paper presents a compositional minimization approach with efficient state space reductions for verifying non-trivial asynchronous designs. These reductions can result in a reduced model that contains the exact same set of observably equivalent behavior in the original model, therefore no false counter-examples result from the verification of the reduced model. This approach allows designs that cannot be handled monolithically or with partial-order reduction to be verified without difficulty. The experimental results show significant scale-up of the compositional minimization approach using these reductions on a number of large asynchronous designs.

Keywords

model checking compositional verification minimization abstraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Madhusudan, P., Nam, W.: Symbolic Compositional Verification by Learning Assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Berezin, S., Campos, S., Clarke, E.M.: Compositional Reasoning in Model Checking. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 81–102. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated Assume-Guarantee Reasoning by Abstraction Refinement. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bustan, D., Grumberg, O.: Modular minimization of deterministic finite-state machines. In: Proceedings the 6th International Workshop on Formal Methods for Industrial Critical Systems, FMICS 2001 (July 2001)Google Scholar
  5. 5.
    Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated Assume-Guarantee Reasoning for Simulation Conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 534–547. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cheung, S., Kramer, J.: Context constraints for compositional reachability analysis. ACM Transations on Software Engineering and Methodology 5(4), 334–377 (1996)CrossRefGoogle Scholar
  7. 7.
    Cheung, S., Kramer, J.: Checking safety properties using compositional reachability analysis. ACM Trans. Softw. Eng. Methodol. 8(1), 49–78 (1999)CrossRefGoogle Scholar
  8. 8.
    Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proceedings of the 4th Annual Symposium on Logic in Computer Science, pp. 353–362. IEEE Press, Piscataway (1989)CrossRefGoogle Scholar
  9. 9.
    Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Dill, D.: Trace Theory for Automatic Hierarchical Verification of Speed Independent Circuits. PhD thesis, Carnegie Mellon University (1988)Google Scholar
  11. 11.
    Giannakopoulou, D., Pǎsareǎnu, C.S., Barringer, H.: Component verification with automatically generated assumptions. Automated Software Engineering, 297–320 (2005)Google Scholar
  12. 12.
    Graf, S., Steffen, B., Luttgen, G.: Compositional minimization of finite state systems using interface specifications. Formal Aspects of Computation 8(5), 607–616 (1996)zbMATHCrossRefGoogle Scholar
  13. 13.
    Grumberg, O., Long, D.: Model checking and modular verification. ACM Transactions on Programming Languages and Systems 16(3), 843–871 (1994)CrossRefGoogle Scholar
  14. 14.
    Henzinger, T., Qadeer, S., Rajamani, S.: You Assume, we Guarantee: Methodology and Case Studies. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 440–451. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Proceedings of the 7th IFIP WG6.1 International Conference on Formal Description Techniques VII, pp. 197–211. Chapman & Hall, Ltd., London (1995)Google Scholar
  16. 16.
    Krimm, J., Mounier, L.: Compositional State Space Generation from Lotos Programs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 239–258. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Martin, A.J.: Self-timed fifo: An exercise in compiling programs into vlsi circuits. Technical Report 1986.5211-tr-86, California Institute of Technology (1986)Google Scholar
  18. 18.
    Mcmillan, K.L.: A methodology for hardware verification using compositional model checking. Technical report, Cadence Berkeley Labs (1999)Google Scholar
  19. 19.
    Myers, C.J.: Computer-Aided Synthesis and Verification of Gate-Level Timed Circuits. PhD thesis, Stanford University (1995)Google Scholar
  20. 20.
    Nam, W., Alur, R.: Learning-Based Symbolic Assume-Guarantee Reasoning with Automatic Decomposition. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 170–185. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Stevens, K., Ginosar, R., Rotem, S.: Relative timing. In: Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 208–218 (1999)Google Scholar
  22. 22.
    Thacker, R.A., Jones, K.R., Myers, C.J., Zheng, H.: Automatic abstraction for verification of cyber-physical systems. In: Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2010, pp. 12–21 (2010)Google Scholar
  23. 23.
    Yao, H., Zheng, H.: Automated interface refinement for compositional verification. IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems 28(3), 433–446 (2009)CrossRefGoogle Scholar
  24. 24.
    Yoneda, T., Yoshikawa, T.: Using partial orders for trace theoretic verification of asynchronous circuits. In: Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems. IEEE Computer Society Press (March 1996)Google Scholar
  25. 25.
    Zheng, H.: Compositional reachability analysis for efficient modular verification of asynchronous designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 29(3) (March 2010)Google Scholar
  26. 26.
    Zheng, H., Ahrens, J., Xia, T.: A compositional method with failure-preserving abstractions for asynchronous design verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27 (2008)Google Scholar
  27. 27.
    Zheng, H., Mercer, E., Myers, C.: Modular verification of timed circuits using automatic abstraction. IEEE Transactions on Computer-Aided Design 22(9), 1138–1153 (2003)CrossRefGoogle Scholar
  28. 28.
    Zheng, H., Myers, C., Walter, D., Little, S., Yoneda, T.: Verification of timed circuits with failure directed abstractions. IEEE Transactions on Computer-Aided Design 25(3), 403–412 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hao Zheng
    • 1
  • Emmanuel Rodriguez
    • 1
  • Yingying Zhang
    • 1
  • Chris Myers
    • 2
  1. 1.University of South FloridaTampaUSA
  2. 2.University of UtahSLCUSA

Personalised recommendations