Advertisement

Parameterized Model Checking of Fine Grained Concurrency

  • Divjyot Sethi
  • Muralidhar Talupur
  • Daniel Schwartz-Narbonne
  • Sharad Malik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7385)

Abstract

Concurrent data structures are provided in libraries such as Intel Thread Building Blocks and Java.util.concurrent to enable efficient implementation of multi-threaded programs. Their efficiency is achieved by using fine grained synchronization which creates less constrained interaction between the threads. This leads to a large number of possible interleavings and makes concurrent data structures hard to verify. In this paper, we describe our key insights from Murphi based parameterized model checking of these data structures. In particular, we describe the first model checking based framework to handle an unbounded number of threads for these data structures. This framework uses the CMP (CoMPositional) method which has been used in verifying cache coherence protocols. The CMP method requires the user to supply lemmas for abstraction refinement. A further contribution of our work is to show how a significant subset of these lemmas can be generated automatically.

Keywords

Model Check Execution Trace Single Thread Separation Logic Linearization Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread Quantification for Concurrent Shape Analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 399–413. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular Safety Checking for Fine-Grained Concurrency. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–248. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model checking of linearizability of concurrent list implementations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Chou, C.-T., Mannava, P.K., Park, S.: A Simple Method for Parameterized Verification of Cache Coherence Protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 382–398. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal Verification of a Lazy Concurrent List-Based Set Algorithm. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 475–488. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of Computer Programming 69(1-3), 35–45 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Harris, T.L.: A Pragmatic Implementation of Non-blocking Linked-Lists. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001), http://dl.acm.org/citation.cfm?id=645958.676105 CrossRefGoogle Scholar
  8. 8.
    Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.: A Lazy Concurrent List-Based Set Algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann Publishers Inc., San Francisco (2008)Google Scholar
  10. 10.
    Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12, 463–492 (1990)CrossRefGoogle Scholar
  11. 11.
    Kristic, S.: Parameterized system verification with guard strengthening and parameter abstraction. In: 4th Int. Workshop on Automatic Verification of Finite State Systems (2005)Google Scholar
  12. 12.
    Lea, D.: The java.util.concurrent synchronizer framework. Sci. Comput. Program. 58, 293–309 (2005), http://dl.acm.org/citation.cfm?id=1127037.1127039 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model Checking Linearizability via Refinement. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    McMillan, K.L.: Verification of Infinite State Systems by Compositional Model Checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets. In: Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 2002, pp. 73–82. ACM, New York (2002), http://doi.acm.org/10.1145/564870.564881 CrossRefGoogle Scholar
  16. 16.
    Michael, M.M., Scott, M.L.: Correction of a memory management method for lock-free data structures. Tech. rep., Rochester, NY, USA (1995)Google Scholar
  17. 17.
    O’Leary, J., Talupur, M., Tuttle, M.R.: Protocol verification using flows: An industrial experience. In: Formal Methods in Computer-Aided Design, FMCAD 2009, pp. 172–179 (November 2009)Google Scholar
  18. 18.
    Reinders, J.: Intel threading building blocks, 1st edn. O’Reilly & Associates, Inc., Sebastopol (2007)Google Scholar
  19. 19.
    Talupur, M., Tuttle, M.R.: Going with the flow: Parameterized verification using message flows. In: Formal Methods in Computer-Aided Design, FMCAD 2008, pp. 1–8 (November 2008)Google Scholar
  20. 20.
    Vafeiadis, V.: Shape-Value Abstraction for Verifying Linearizability. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 335–348. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-concurrent linearisable objects. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2006, pp. 129–136. ACM, New York (2006), http://doi.acm.org/10.1145/1122971.1122992 CrossRefGoogle Scholar
  22. 22.
    Vafeiadis, V., Parkinson, M.: A Marriage of Rely/Guarantee and Separation Logic. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Vechev, M., Yahav, E., Yorsh, G.: Experience with Model Checking Linearizability. In: Păsăreanu, C.S. (ed.) Model Checking Software. LNCS, vol. 5578, pp. 261–278. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Zhang, S.J.: Scalable automatic linearizability checking. In: Proceeding of the 33rd International Conference on Software Engineering, ICSE 2011, pp. 1185–1187. ACM, New York (2011), http://doi.acm.org/10.1145/1985793.1986037 Google Scholar
  25. 25.
    Zhang, S.J., Liu, Y.: Model checking a lazy concurrent list-based set algorithm. In: Proceedings of the 2010 Fourth International Conference on Secure Software Integration and Reliability Improvement, SSIRI 2010, pp. 43–52. IEEE Computer Society, Washington, DC (2010), http://dx.doi.org/10.1109/SSIRI.2010.37 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Divjyot Sethi
    • 1
  • Muralidhar Talupur
    • 2
  • Daniel Schwartz-Narbonne
    • 1
  • Sharad Malik
    • 1
  1. 1.Princeton UniversityUSA
  2. 2.Strategic CAD LabsIntel CorporationUSA

Personalised recommendations