Gossiping Girls Are All Alike

  • Theo C. Ruys
  • Pim Kars
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7385)


This paper discusses several different ways to model the well-known gossiping girls problem in promela. The highly symmetric nature of the problem is exploited using plain promela, topspin (an extension to Spin for symmetry reduction), and by connecting Spin to bliss (a tool to compute canonical representations of graphs). The model checker Spin is used to compare the consequences of the various modelling choices.

This – tutorial style – paper is meant as a road map of the various ways of modelling symmetric systems that can be explored.


Model Checker Adjacency Matrix Canonical Representation Symmetry Reduction Liveness Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosnacki, D., Dams, D., Holenderski, L.: Symmetric Spin. STTT 4(1), 92–106 (2002)CrossRefGoogle Scholar
  2. 2.
    Donaldson, A.F., Miller, A.: A Computational Group Theoretic Symmetry Reduction Package for the Spin Model Checker. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 374–380. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Edelkamp, S., Lluch Lafuente, A., Leue, S.: Directed Explicit Model Checking with HSF-SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Emerson, E.A., Trefler, R.J.: From Asymmetry to Full Symmetry: New Techniques for Symmetry Reduction in Model Checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 142–157. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Emerson, E.A., Wahl, T.: On Combining Symmetry Reduction and Symbolic Representation for Efficient Model Checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 216–230. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Holzman, G.J.: The Spin Model Checker – Primer and Reference Manual. Addison-Wesley, Boston (2003)Google Scholar
  7. 7.
    Holzmann, G.J., Joshi, R.: Model-Driven Software Verification. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 76–91. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Holzmann, G.J., Joshi, R., Groce, A.: Tackling Large Verification Problems with the Swarm Tool. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 134–143. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Hurkens, C.: Spreading gossip efficiently. Nieuw Archief Voor Wiskunde 5/1(2), 208–210 (2000)MathSciNetGoogle Scholar
  10. 10.
    Junttila, T., Kaski, P.: Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs. In: Applegate, D., Brodal, G.S., Panario, D., Sedgewick, R. (eds.) Proc. of ALENEX 2007, pp. 135–149. SIAM (2007)Google Scholar
  11. 11.
    Katoen, J.-P.: How to Model and Analyze Gossiping Protocols? acm sigmetrics’ Performance Evaluation Review 36(3), 3–6 (2008)CrossRefGoogle Scholar
  12. 12.
    Liben-Nowell, D.: Gossip is Synteny: Incomplete Gossip and the Syntenic Distance between Genomes. Journal of Algorithms 43(2), 264–283 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0,1, ∞ )-Counter Abstraction. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Pong, F., Dubois, M.: A New Approach for the Verification of Cache Coherence Protocols. IEEE Transactions on Parallel and Distributed Systems 6(8), 773–787 (1995)CrossRefGoogle Scholar
  15. 15.
    Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Rensink, A.: Isomorphism Checking in groove. In: Zündorf, A., Varró, D. (eds.) Proc. of Graph-Based Tools, GraBaTs 2006, Natal, Brazil. Electronic Communications of the EASST, vol. 1 (2006)Google Scholar
  17. 17.
    Rensink, A., Kuperus, J.-H.: Repotting the Geraniums: On Nested Graph Transformation Rules. In: Boronat, A., Heckel, R. (eds.) Proc. of Graph Transformation and Visual Modeling Techniques, York, UK. Electronic Communications of the EASST, vol. 18 (March 2009)Google Scholar
  18. 18.
    Ruys, T.C.: Low-Fat Recipes for Spin. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 287–321. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Ruys, T.C.: Towards Effective Model Checking. PhD thesis, University of Twente, Enschede, The Netherlands (March 2001)Google Scholar
  20. 20.
    Ruys, T.C.: Optimal Scheduling Using Branch and Bound with SPIN 4.0. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 1–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Seindal, R.: GNU m4, version 1.4.16. Free Software Foundation, Inc., 1.4.16 edition (2011),
  22. 22.
    Vaandrager, F.W.: A First Introduction to uppaal. In: Tretmans, G.J. (ed.) Quasimodo Handbook. Springer (to appear, 2012)Google Scholar
  23. 23.
    bliss – A Tool for Computing Automorphism Groups and Canonical Labelings of Graphs,
  24. 24.
    gap – system for computational discrete algebra,
  25. 25.
    groove – graphs for object-oriented verification,
  26. 26.
    Saucy2 – Fast Symmetry Discovery,
  27. 27.
    swarm - verification script generator for Spin,
  28. 28.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Theo C. Ruys
    • 1
  • Pim Kars
    • 2
  1. 1.RUwiseThe Netherlands
  2. 2.OrdinaThe Netherlands

Personalised recommendations