Films of Doped Low Polar Azopolymers

  • Raquel Alicante
Part of the Springer Theses book series (Springer Theses)


In this part of the thesis, a study of the nonlinear optical (NLO) properties of films composed of highly efficient chromophores dispersed in a photoaddressable liquid-crystalline polymer (LCP) matrix is presented.


Second Harmonic Generation Harmonic Signal Polar Orientation Second Harmonic Generation Signal Harmonic Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.W. Harper et al., Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the role of chromophore chromophore electrostatic interactions. J. Opt. Soc. Am. B 15(1), 329 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    J. Reyes-Esqueda et al., Effect of chromophore–chromophore electrostatic interactions in the NLO response of functionalized organic-inorganic sol-gel materials. Optics Communications 198(1–3), 207 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Sekkat, M. Dumont, Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility. Synth. Met. 54(1–3), 373 (1993)CrossRefGoogle Scholar
  4. 4.
    C.W. To, K.Y. Wong, Comparative studies of molecular reorientations in thermal-assisted and photoassisted electric-field poled nonlinear optical polymers. J. Appl. Phys. 100(7), 073505(1) (2006)Google Scholar
  5. 5.
    E. Ishow et al., A molecular photostirrer for poling non-linear optical chromophores in a polymer matrix. J. Opt. A: Pure Appl. Opt. 4(6), S197 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    B.C. Olbricht et al., Laser-assisted poling of binary chromophore materials. J. Phys. Chem. C 112(21), 7983 (2008)CrossRefGoogle Scholar
  7. 7.
    S.J. Benight et al., Reduced dimensionality in organic electro-optic materials: theory and defined order. J. Phys. Chem. B 114(37), 11949 (2010)CrossRefGoogle Scholar
  8. 8.
    L.R. Dalton et al. in Organic Thin Films for Photonic Applications, ACS Symposium Series, vol. 1039, ed. by W.N. Herman, S.R. Flom, S.H. Foulger, ACS, Washington, DC, (2010) (Chap. 2)Google Scholar
  9. 9.
    R.M. Tejedor et al., Photoinduced chiral nematic organization in an achiral glassy nematic azopolymer. Adv. Funct. Mater. 17(17), 3486 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Alías et al., Iminium salts of ω-dithiafulvenylpolyenals: an easy entry to the corresponding aldehydes and doubly proaromatic nonlinear optic-phores. J. Org. Chem. 73(15), 5890 (2008)CrossRefGoogle Scholar
  11. 11.
    J.G. Meier, R. Ruhmann, J. Stumpe, Planar and homeotropic alignment of LC polymers by the combination of photoorientation and self-organization. Macromolecules 33(3), 843 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    M. Han, K. Ichimura, In-plane and tilt reorientation of p-methoxyazobenzene side chains tethered to liquid crystalline polymethacrylates by irradiation with 365 nm light. Macromolecules 34(1), 90 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    E. Uchida et al., Control of thermally enhanced photoinduced reorientation of polymethacrylate films with 4-methoxyazobenzene side groups by irradiating with 365 and 633 nm light and annealing. Macromolecules 37(14), 5282 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    H.W. Guan, C.H. Wang, Dipolar interaction assisted effects on second harmonic generation. J. Chem. Phys. 98(4), 3463 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    A. Vembris, M. Rutkis, E. Laizane, Effect of corona poling and thermo cycling sequence on NLO properties of the guest-host system. Mol. Cryst. Liq. Cryst. 485, 873 (2008)CrossRefGoogle Scholar
  16. 16.
    J.C. Dubois et al., Behavior and properties of side chain thermotropic liquid crystal polymers. Acta Polym. 48(3), 47 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Condensed Matter PhysicsUniversity of ZaragozaZaragozaSpain

Personalised recommendations