Piperazine Azopolymer Thin Films

  • Raquel Alicante
Part of the Springer Theses book series (Springer Theses)


This chapter describes the linear and nonlinear optical (NLO) properties of thin films prepared from various liquid crystalline (LC) azo polymers with different donor groups and different azo chromophore content.


Second Harmonic Generation Liquid Crystalline Harmonic Signal Nonlinear Coefficient Polar Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Menzel et al., Small-angle X-ray scattering and ultraviolet-visible spectroscopy studies on the structure and structural changes in Langmuir–Blodgett films of polyglutamates with azobenzene moieties tethered by alkyl spacers of different length. Langmuir 10(6), 1926 (1994)CrossRefGoogle Scholar
  2. 2.
    J. Stumpe, T. Fischer, H. Menzel, Langmuir–Blodgett films of photochromic polyglutamates. Relation between photochemical modification and thermotropic properties. Macromolecules 29(8), 2831 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    T. Geue, A. Ziegler, J. Stumpe, Light-induced orientation phenomena in Langmuir–Blodgett multilayers. Macromolecules 30(19), 5729 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    F. Lagugné Labarthet et al., Spectroscopic and optical characterization of a series of azobenzene-containing side-chain liquid crystalline polymers. Macromolecules 33(18), 6815 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    S. Freiberg et al., Investigation of thermochromism in a series of side-chain, liquid-crystalline, azobenzene-containing polymers. Can. J. Chem. 82(1), 1 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Rodriguez et al., Quantitative determination of the polar order induced under high electric field in amorphous PDR1M azobenzene polymer films. J. Phys. Chem. B 107, 9736 (2003)CrossRefGoogle Scholar
  7. 7.
    A.M. Kelley, A multimode vibronic treatment of absorption, resonance Raman, and hyper-Rayleigh scattering of excitonically coupled molecular dimers. J. Chem. Phys. 119(6), 3320 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    H. Rau, in Photochemistry and Photophysics, Vol. 2, ed. by J. F. Rabek (CRC Press, Boca Ratón, FL, 1990), Chap. 4Google Scholar
  9. 9.
    A. Natansohn, P. Rochon, Photoinduced motions in azo-containing polymers. Chem. Rev. 102(11), 4139 (2002)CrossRefGoogle Scholar
  10. 10.
    F. J. Rodríguez, Propiedades ópticas fotoinducidas en polímeros con uidades de azobenceno (2005) Ph.D. Dissertation, Universidad de ZargozaGoogle Scholar
  11. 11.
    C. Sánchez et al., Biphotonic holographic recording in a liquid crystalline cyanoazobenzene side-chain polymethacrylate. Polarization, intensity, and relief gratings. J. Appl. Phys. 89(10), 5299 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    H.L. Hampsch et al., Second harmonic generation in corona poled, doped polymer films as a function of corona processing. J Appl Phys 67(2), 1037 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    H. Wang, R.C. Jarnagin, E.T. Samulski, Electric field poling effects on the molecular reorientational dynamics of side-chain nonlinear optical polymers. Macromolecules 27(17), 4705 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    T. Weyrauch in Relaxation Phenomena. Liquid Crystals, Magnetic Systems, Polymers, High-Tc Superconductors, Metallic Glasses, ed. by W. Haase, S. Wróbel (Springer, Berlin, Heidelberg, 2003)Google Scholar
  15. 15.
    N. Tirelli et al., Structure–activity relationship of new organic NLO materials based on push-pull azodyes. 1. Synthesis and molecular properties of the dyes. J. für praktische Chemie 340(2), 122 (1998)CrossRefGoogle Scholar
  16. 16.
    M. Makowska-Janusik et al., Molecular dynamics simulations of electric field poled nonlinear optical chromophores incorporated in a polymer matrix. J. Phys. Chem. B 108(2), 588 (2004)CrossRefGoogle Scholar
  17. 17.
    Z. Sekkat, M. Dumont, Photoassisted poling of azo dye doped polymeric films at room temperature. Appl. Phys. B 54(5), 486 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Sekkat et al., Room-temperature photoinduced poling and thermal poling of a rigid main-chain polymer with polar azo dyes in the side chain. Chem. Mater. 7(1), 142 (1995)CrossRefGoogle Scholar
  19. 19.
    Z. Sekkat et al., Correlation between polymer architecture and sub- glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes. J. Opt. Soc. Am. B 15(1), 401 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    D. J. Williams, in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1, ed. by D. S. Chemla, J. Zyss (Academic, New York, 1987)Google Scholar
  21. 21.
    M. Eich et al., Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer. J. Appl. Phys. 66(6), 2559 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    V. Rodriguez, F. Lagugné-Labarthet, C. Sourisseau, Orientation distribution functions based upon both < P1 >, < P3 > order parameters and upon the four < P1 > up to < P4 > values: application to an electrically poled nonlinear optical azo polymer film. Appl. Spectrosc. 59(3), 322 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    J.C. Dubois et al., Behaviour and properties of side chain thermotropic liquid crystal polymers. Acta. Polym. 48(3), 47 (1997)CrossRefGoogle Scholar
  24. 24.
    M. Amano et al., Second order nonlinear optical properties of polymers containing mesogenic side chains. Mol. Cryst. Liq. Cryst. Incorporating Nonlinear Optics 182, 81 (1990)CrossRefGoogle Scholar
  25. 25.
    D. Gonin et al., Side chain liquid crystalline polymers: electric field effects and nonlinear properties. Macromol. Symp. 96(1), 185 (1995)CrossRefGoogle Scholar
  26. 26.
    P.M. Blanchard, G.R. Mitchell, A comparison of photoinduced poling and thermal poling of azo-dye-doped polymer films for second order nonlinear optical applications. Appl. Phys. Lett. 63(15), 2038 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    X. Meng et al., Azo polymers for reversible optical storage. 10. Cooperative motion of polar side groups in amorphous polymers. Macromolecules 29(3), 946 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    T. Fischer et al., Interdependence of photoorientation and thermotropic self-organization in photochromic liquid crystalline polymers, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 298 (1997):213Google Scholar
  29. 29.
    J.C. Kim et al., Control of three-dimensional refractive indices by both drawing and poling of functionalized phenoxy side-chain polymers. Macromolecules 29(22), 7177 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    X.T. Tao et al., Phase-matched second-harmonic generation in poled polymers by the use of birefringence. J. Opt. Soc. Am. B 12(9), 1581 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    K. Ichimura, M. Han, S. Morino, Photochemistry determined by light propagation. part 1: three-dimensional photomanipulation of self-organized azobenzenes in liquid-crystalline polymers. Chem. Lett. 28(1), 85 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Condensed Matter PhysicsUniversity of ZaragozaZaragozaSpain

Personalised recommendations