Experimental Methods

  • Raquel Alicante
Part of the Springer Theses book series (Springer Theses)


The techniques and equipment used for the characterization of the materials (at the molecular and macroscopic level) that have been used in this thesis are detailed below. Besides, the procedures used to modify the properties of the polymers of the study, mainly based on optical and thermal treatments, are also explained.


Corona Discharge Harmonic Signal Nonlinear Coefficient Fundamental Wave Nonlinear Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Alicante et al., Synthesis and nonlinear optical properties of side chain liquid crystalline polymers containing azobenzene push-pull chromophores. J. Polym. Sci. Part A: Polym. Chem. 48(1), 232 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    R. Ulrich, R. Torge, Measurement of thin film parameters with a prism coupler. Appl. Opt. 12(12), 2901 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    J.L. Oudar, Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J. Chem. Phys. 67(2), 446 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    D. S. Chemla, Z. Zyss (Eds.) Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, New York, 1987) 1Google Scholar
  5. 5.
    J. Jerphagnon, S.K. Kurtz, Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals. J. Appl. Phys. 41(4), 1667 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    F. Zernicke, J.E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973)Google Scholar
  7. 7.
    L.M. Blinov et al., Polar diffraction gratings made by spatially periodic photopoling Langmuir–Blodgett films. Appl. Phys. Lett. 80(1), 16 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Che et al., Fabrication of surface relief grating with second-order nonlinearity using urethane-urea copolymer films. Jpn. J. Appl. Phys., Part 1 38(11), 6316 (1999)CrossRefGoogle Scholar
  9. 9.
    N.K. Viswanathan et al., Surface relief structures on azo polymer films. J. Mater. Chem. 9(9), 1941 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    T.G. Pedersen et al., Mean-field theory of photoinduced formation of surface reliefs in side-chain azobenzene polymers. Phys. Rev. Lett. 80(1), 89 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    T.G. Pedersen, P.M. Johansen, Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers. Phys. Rev. Lett. 79(13), 2470 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    F.J. Rodríguez, Ph.D. Dissertation, Propiedades ópticas fotoinducidas en polímeros con uidades de azobenceno Universidad de Zargoza, 2005Google Scholar
  13. 13.
    G. Martin et al., Photo-induced non-linear susceptibility patterns in electro-optic polymers. Synth. Met. 127(1–3), 49 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Condensed Matter PhysicsUniversity of ZaragozaZaragozaSpain

Personalised recommendations