Introduction and Basic Theory

  • Raquel Alicante
Part of the Springer Theses book series (Springer Theses)


In this chapter some basic concepts concerning nonlinear optics (NLO) will be covered as well as theoretical fundamentals on which the central measurements of this thesis are based. The development of the model used to characterize the studied polymeric systems will also be shown in the following pages, in order to make clear the subsequent treatment of the experimentally obtained data.


Dipole Moment Second Harmonic Generation Nonlinear Coefficient Liquid Crystalline Polymer Fundamental State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. M. Cabrera., F. Agulló., F. J. López, Óptica electromagnética vol. 2, Addison-Wesley Iberoamericana Española, Madrid (2000)Google Scholar
  2. 2.
    R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992)Google Scholar
  3. 3.
    R.L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996)Google Scholar
  4. 4.
    P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991)Google Scholar
  5. 5.
    P.A. Franken et al., Generation of optical harmonics. Phys. Rev. Lett. 7(4), 118 (1961)ADSCrossRefGoogle Scholar
  6. 6.
    T. Verbiest, K. Clays, V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques (Taylor & Francis, Boca Raton, FL, 2009)CrossRefGoogle Scholar
  7. 7.
    D.A. Kleinman, Theory of second harmonic generation of light. Phys. Rev. 128(4), 1761 (1962)ADSCrossRefGoogle Scholar
  8. 8.
    P.D. Maker et al., Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. Lett. 8(1), 21 (1962)ADSCrossRefGoogle Scholar
  9. 9.
    J. Jerphagnon, S.K. Kurtz, Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals. J. Appl. Phys. 41(4), 1667 (1970)ADSCrossRefGoogle Scholar
  10. 10.
    W.N. Herman, L.M. Hayden, Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials. J. Optical Soc. Am. B 12(3), 416 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    R. Paschotta, Encyclopedia of Laser Physics and Technology, vol. 2 (Wiley-VCH, Weinhiem, Germany, 2008)Google Scholar
  12. 12.
    J. Casas Peláez, Óptica (Librería Central, Zaragoza, 1994)Google Scholar
  13. 13.
    B.F. Levine et al., Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids. Appl. Phys. Lett. 24(9), 445 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    J.L. Oudar, H. Le Person, Second-order polarizabilities of some aromatic molecules. Optics Commun 15(2), 258 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    K.D. Singer et al., Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation. J. Chem. Phys. 75(7), 3572 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    I. Ledoux, J. Zyss, Influence of the molecular environment in solution measurements of the second-order optical susceptibility for urea and derivatives. Chem. Phys. 73(1–2), 203 (1982)CrossRefGoogle Scholar
  17. 17.
    S. Di Bella et al., Coordination and organometallic complexes as second-order nonlinear optical molecular materials. Top. Organomet. Chem. 28, 1 (2010)CrossRefGoogle Scholar
  18. 18.
    G.R. Meredith, J. VanDusen, D.J. Williams, Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers. Macromolecules 15(5), 1385 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    G. R. Meredith, J. G. VanDusen, D. J. Williams, in “Nonlinear Optical Properties of Organic and Polymeric Materials”, ACS Symposium Series, vol. 233, ed. by D. J. Williams, ACS, Washington, DC, Chap. 5, pp. 109–133 (1983)Google Scholar
  20. 20.
    K. D. Singer et al., in “Nonlinear Optical Properties of Organic Molecules and Crystals”, Vol. 1, ed. by D. S. Chemla and J. Zyss (1987), Academic, New York, p. 437Google Scholar
  21. 21.
    D. J. Williams et al., in “Nonlinear Optical Properties of Organic Molecules and Crystals”, vol. 1, ed. by D. S. Chemla and J. Zyss, Academic, New York, p. 405 (1987)Google Scholar
  22. 22.
    B.L. Davydov et al., Connection between charge transfer and laser second harmonic generation. J. Exp. Theor. Phys. Lett 12, 16 (1970)Google Scholar
  23. 23.
    H.S. Nalwa, S. Miyata (eds.), Nonlinear Optics of Organic Molecules and Polymers (CRC, Boca Ratón, FL, 1997)Google Scholar
  24. 24.
    J.L. Oudar, D.S. Chemla, Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66(6), 2664 (1977)ADSCrossRefGoogle Scholar
  25. 25.
    R.A. Huijts, G.L.J. Hesselink, Length dependence of the second-order polarizability in conjugated organic molecules. Chem. Phys. Lett. 156(2–3), 209 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    S.R. Marder, D.N. Beratan, L.-T. Cheng, Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules. Science 252(5002), 103 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    S.R. Marder et al., Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules. Science 261(5118), 186 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    F. Meyers et al., Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation. J. Am. Chem. Soc. 116(23), 10703 (1994)CrossRefGoogle Scholar
  29. 29.
    S.R. Marder et al., A unified description of linear and nonlinear polarization in organic polymethine dyes. Science 265(5172), 632 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    M. Ahlheim et al., Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient. Science 271(5247), 335 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    S.R. Marder et al., Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity. Science 263(5146), 511 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    S.R. Marder et al., Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388(6645), 845 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    E. Aqad et al., Novel D-π-A chromophores based on the fulvene accepting moiety. Org. Lett. 3(15), 2329 (2001)CrossRefGoogle Scholar
  34. 34.
    C.B. Gorman, S.R. Marder, An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules. Proc. Nat. Acad. Sci. 90(23), 11297 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    G. Bourhill et al., Experimental demonstration of the dependence of the first hyperpolarizability of donor-acceptor-substituted polyenes on the ground-state polarization and bond length alternation. J. Am. Chem. Soc. 116(6), 2619 (1994)CrossRefGoogle Scholar
  36. 36.
    C.B. Gorman, S.R. Marder, Effect of molecular polarization on bond-length alternation, linear polarizability, first and second hyperpolarizability in donor-acceptor polyenes as a function of chain length. Chem. Mater. 7(1), 215 (1995)CrossRefGoogle Scholar
  37. 37.
    C. Reichardt, Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94(8), 2319 (1994)CrossRefGoogle Scholar
  38. 38.
    J. Li, C.J. Cramer, D.G. Truhlar, Two-response-time model based on CM2/INDO/S2 electrostatic potentials for the dielectric polarization component of solvatochromic shifts on vertical excitation energies. Int. J. Quantum Chem. 77(1), 264 (2000)CrossRefGoogle Scholar
  39. 39.
    F. J. Rodríguez, Propiedades ópticas fotoinducidas en polímeros con uidades de azobenceno Ph.D. Dissertation, Universidad de Zargoza (2005)Google Scholar
  40. 40.
    R.B. Seymour, C.E. Carraher, Polymer Chemistry: An Introduction (CRC Press, Boca Raton, FL, 1988)Google Scholar
  41. 41.
    J. Areizaga et al., “Polímeros” Síntesis, Madrid (2002)Google Scholar
  42. 42.
    L.R. Dalton, P.A. Sullivan, D.H. Bale, Electric field poled organic electro-optic materials: state of the art and future prospects. Chem. Rev. 110(1), 25 (2010)CrossRefGoogle Scholar
  43. 43.
    J.C. Dubois et al., Behavior and properties of side chain thermotropic liquid crystal polymers. Acta. Polym. 48(3), 47 (1997)CrossRefGoogle Scholar
  44. 44.
    L.R. Dalton et al., Guest–host cooperativity in organic materials greatly enhances the nonlinear optical response. J. Phys. Chem. C 112(11), 4355 (2008)CrossRefGoogle Scholar
  45. 45.
    M. R. Worboys, et al., in Proceedings 2nd International Conference on Electrical, Optical and Acoustic Properties of Polymers Institute of Materials, London (18-1, 18-6) (1990)Google Scholar
  46. 46.
    N. Koide et al., Thermal transition behavior and second nonlinear optical properties of polymers containing mesogenic side chains. Mol. Cryst. Liq. Cryst. 198, 323 (1991)CrossRefGoogle Scholar
  47. 47.
    I. Rau, F. Kajzar, New insights into the relaxation of polar order in electro-optic polymers. Thin Solid Films 516(24), 8880 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    F. Kajzar, C. Noël, Molecular design and properties of side chain liquid crystal polymers for applications in optoelectronics. Adv. Mater. Opt. Electron. 8(5), 247 (1998)CrossRefGoogle Scholar
  49. 49.
    D.M. Burland, R.D. Miller, C.A. Walsh, Second-order nonlinearity in poled-polymer systems. Chem. Rev. 94(1), 31 (1994)CrossRefGoogle Scholar
  50. 50.
    L.R. Dalton et al., Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics. Chem. Mater. 7(6), 1060 (1995)CrossRefGoogle Scholar
  51. 51.
    J.A. Delaire, K. Nakatani, Linear and nonlinear optical properties of photochromic molecules and materials. Chem. Rev. 100(5), 1817 (2000)CrossRefGoogle Scholar
  52. 52.
    S.K. Yesodha, C.K. Sadashiva Pillai, N. Tsutsumi, Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Prog. Poly. Sci. 29(1), 45 (2004)CrossRefGoogle Scholar
  53. 53.
    G.S. Hartley, The cis-form of azobenzene. Nature 140(3537), 281 (1937)ADSCrossRefGoogle Scholar
  54. 54.
    H. Rau, in “Photochemistry and Photophysics” vol. l2, ed. by J. Rebek CRC Press, Boca Ratón, FL (1990)Google Scholar
  55. 55.
    T. Bieringer, in “Holographic Data Storage” ed. by H. J. Coufal, D. Psaltis and G. T. Sincerbox, Springer, New York, p. 209 (2000)Google Scholar
  56. 56.
    T. Huang, K.H. Wagner, Diffraction analysis of photoanisotropic holography: an anisotropic saturation model. J. Optical Soc. Am. B 13(2), 282 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    N.C.R. Holme, P.S. Ramanujam, S. Hvilsted, Photoinduced anisotropy measurements in liquid-crystalline azobenzene side-chain polyesters. Appl. Opt. 35(23), 4622 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    C. Sánchez et al., Biphotonic holographic gratings in azobenzene polyesters: surface relief phenomena and polarization effects. Appl. Phys. Lett. 77(10), 1440 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    Z. Sekkat, M. Dumont, Photoassisted poling of azo dye doped polymeric films at room temperature. Appl. Phys. B 54(5), 486 (1992)ADSCrossRefGoogle Scholar
  60. 60.
    P.M. Blanchard, G.R. Mitchell, A comparison of photoinduced poling and thermal poling of azo-dye-doped polymer films for second order nonlinear optical applications. Appl. Phys. Lett. 63(15), 2038 (1993)ADSCrossRefGoogle Scholar
  61. 61.
    H. Menzel, in “Photorefractive Organic Thin Films”, ed. by Z. Sekkat and W. Knoll Academic Press, San Diego (2002)Google Scholar
  62. 62.
    M. Kasha, H.R. Rawls, M. Ashraf El-Bayoumi, The exciton model in molecular spectroscopy. Pure Appl. Chem. 11(3–4), 371 (1965)CrossRefGoogle Scholar
  63. 63.
    V. Czikklely, Kuhn H. Försterling, Extended dipole model for aggregates of dye molecules. Chem. Phys. Lett. 6(3), 207 (1970)ADSCrossRefGoogle Scholar
  64. 64.
    A.M. Kelley, A multimode vibronic treatment of absorption, resonance Raman, and hyper-Rayleigh scattering of excitonically coupled molecular dimers. J. Chem. Phys. 119(6), 3320 (2003)ADSCrossRefGoogle Scholar
  65. 65.
    A. Priimägi, “Polymer-Azobenzene Complexes: From Supramolecular Concepts to Efficient Photoresponsive Polymers” Ph.D. Dissertation, Helsinki University of Technology (2009)Google Scholar
  66. 66.
    H. Menzel et al., Small-angle X-ray scattering and ultraviolet-visible spectroscopy studies on the structure and structural changes in langmuir-blodgett films of polyglutamates with azobenzene moieties tethered by alkyl spacers of different length. Langmuir 10(6), 1926 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Condensed Matter PhysicsUniversity of ZaragozaZaragozaSpain

Personalised recommendations