Social Crowds Using Transactional Analysis

  • Brian C. Ricks
  • Parris K. Egbert
Part of the Studies in Computational Intelligence book series (SCI, volume 441)


More and more applications are relying on simulated crowds to populate films, games, and architecture. Decades of work in this area have produced agents that deftly avoid collisions, but the crowds still look stiff and false because agents do not socialize naturally with each other. On the other hand, ours is a new, expressive algorithm for adding social dynamics to crowds that breathes a new dimension of realism into simulations. Unlike previous approaches, our work allows agents to have multiple social encounters with other agents. We correctly allow interactions to evolve as time passes using the psychological area of transactional analysis. Additionally, we break from previous paradigms since we do not tie our approach to a specific obstacle avoidance algorithm. Instead our algorithm has a flexible architecture that will run with almost any obstacle avoidance algorithm. Finally, we allow for artist direction in our simulations, including bi-modal crowds and social environments that can be changed in real-time. Our results show that our social crowd algorithm runs in real-time with up to 4,000 agents with far more realistic behaviors than previously simulated.


Multiagent System Reward Function Formation Nucleus Interest Level Crowd Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1928–1935 (2008)Google Scholar
  2. 2.
    Berne, E.: Transactional analysis: a new and effective method of group therapy. American Journal of Psychotherapy 12(4), 735 (1958)Google Scholar
  3. 3.
    Berne, E.: What do you say after you say hello?: The psychology of human destiny. Bantam, New York (1984)Google Scholar
  4. 4.
    Berne, E.: Games people play: The psychology of human relationships. Penguin, Baltimore (2010)Google Scholar
  5. 5.
    Berne, E., Steiner, C., Kerr, C.: Beyond games and scripts. Ballantine Books, New York (1981)Google Scholar
  6. 6.
    Carstensdottir, E., Gudmundsdottir, K., Valgardsson, G., Vilhjalmsson, H.: Where to Sit? The Study and Implementation of Seat Selection in Public Places. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, K.R. (eds.) IVA 2011. LNCS, vol. 6895, pp. 48–54. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Coleman, J., James, J.: The equilibrium size distribution of freely-forming groups. Sociometry 24(1), 36–45 (1961)CrossRefGoogle Scholar
  8. 8.
    Durupinar, F., Allbeck, J., Pelechano, N., Badler, N.: Creating crowd variation with the ocean personality model. Autonomous Agents and Multiagent Systems 3, 1217–1220 (2008)Google Scholar
  9. 9.
    Durupınar, F., Pelechano, N., Allbeck, J., Güdükbay, U., Badler, N.: How the ocean personality model affects the perception of crowds. IEEE Computer Graphics and Applications 31(3) (2011)Google Scholar
  10. 10.
    Goldberg, L.: An alternative “description of personality”: The big-five factor structure. Journal of Personality and Social Psychology 59(6), 1216 (1990)CrossRefGoogle Scholar
  11. 11.
    Gröschel, A.: Towards believable crowd simulation for interactive real-time applications. Thesis, Hochshule fur Technik und Wirtshaft Berlin (2011)Google Scholar
  12. 12.
    Guy, S., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: A least-effort approach to crowd simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 119–128 (2010)Google Scholar
  13. 13.
    Harris, T.: I’m okay, you’re okay: a practical guide to transactional analysis. Harper Perennial (2004)Google Scholar
  14. 14.
    Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review 51(5) (1995)Google Scholar
  15. 15.
    James, J.: The distribution of free-forming small group size. American Sociological Review (1953)Google Scholar
  16. 16.
    Jan, D., Traum, D.R.: Dialog Simulation for Background Characters. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 65–74. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Jan, D., Traum, D.R.: Dynamic movement and positioning of embodied agents in multiparty conversations. In: Proceedings of the Workshop on Embodied Language Processing, pp. 59–66 (2007)Google Scholar
  18. 18.
    Karamouzas, I., Overmars, M.: Simulating the local behaviour of small pedestrian groups. In: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology, pp. 183–190 (2010)Google Scholar
  19. 19.
    Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS One 5(4), e10,047 (2010)CrossRefGoogle Scholar
  20. 20.
    Musse, S.R., Thalmann, D.: A model of human crowd behavior: Group inter-relationship and collision detection analysis. Computer Animation and Simulation 97, 39–51 (1997)Google Scholar
  21. 21.
    Ondřej, J., Pettré, J., Olivier, A., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. ACM Transactions on Graphics (TOG) 29(4) (2010)Google Scholar
  22. 22.
    Padilha, E., Carletta, J.: A simulation of small group discussion. In: Proceedings of EDILOG, pp. 117–124 (2002)Google Scholar
  23. 23.
    Patel, J.: Simulation of small group discussions for middle level of detail crowds. DTIC Document (2004)Google Scholar
  24. 24.
    Pedica, C., Högni Vilhjálmsson, H., Lárusdóttir, M.: Avatars in conversation: The importance of simulating territorial behavior. In: Allbeck, J., Badler, N., Bickmore, T., Pelachaud, C., Safonova, A. (eds.) IVA 2010. LNCS, vol. 6356, pp. 336–342. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Pedica, C., Vilhjálmsson, H.H.: Spontaneous Avatar Behavior for Human Territoriality. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA 2009. LNCS, vol. 5773, pp. 344–357. Springer, Heidelberg (2009)Google Scholar
  26. 26.
    Pelechano, N., Stocker, C., Allbeck, J., Badler, N.: Being a part of the crowd: towards validating vr crowds using presence. In: Autonomous Agents and Multiagent Systems, pp. 136–142 (2008)Google Scholar
  27. 27.
    Popelová, M., Bída, M., Brom, C., Gemrot, J., Tomek, J.: When a Couple Goes Together: Walk along Steering. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 278–289. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Reynolds, C.: Steering behaviors for autonomous characters. In: Game Developers Conference (1999)Google Scholar
  29. 29.
    Ricks, B., Egbert, P.: Improved obstacle relevancy, distance, and angle for crowds constrained to arbitrary manifolds in 3d space. In: Eurographics (2012)Google Scholar
  30. 30.
    Ricks, B., Egbert, P.: More realistic, flexible, and expressive social crowds using transactional analysis. The Visual Computer, 1–10 (2012)Google Scholar
  31. 31.
    Scheflen, A., Ashcraft, N.: Human territories: How we behave in space-time. Prentice-Hall, New York (1976)Google Scholar
  32. 32.
    Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: Steerbench: a benchmark suite for evaluating steering behaviors. Computer Animation and Virtual Worlds 20(5-6), 533–548 (2009)CrossRefGoogle Scholar
  33. 33.
    Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin, M.: Composite agents. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 39–47 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Brigham Young UniversityProvoUSA

Personalised recommendations