Using Visual Representation for Decision Support in Institutional Research Evaluation

  • Anastasios Tsolakidis
  • Cleo Sgouropoulou
  • Effie Papageorgiou
  • Olivier Terraz
  • Georgios Miaoulis
Part of the Studies in Computational Intelligence book series (SCI, volume 441)


Higher Education Institutes worldwide are facing an increased demand to strengthen their capacities for research and innovation. This study introduces an ontology-based software system architecture that supports research policy evaluation processes and decision-making strategies, using visual analytics. A knowledge modeling technique drawing on multi criteria analysis and data visualisation is proposed. In addition, the paper presents a prototype built on Protegé, Pellet reasoner and Java Technologies, which is friendly to the user and capable of interactive synthesis of institutional decision support criteria. In this work we make a transition from knowledge to visual web-based decision support systems with different kinds of visualisations. The developed system enables research managers to evaluate key aspects of academic research activity in the context of specific policies and criteria, correlate strategic goals with research performance and make informed decisions on the establishment of research strategies.


decision support system university research visual support system evaluation data visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonaccorsi, A., Daraio, C., Lepori, B., Slipersaeter, S.: Indicators on individual higher education institutions: addressing data problems and comparability issues. Research Evaluation 16(2), 66–78 (2007)CrossRefGoogle Scholar
  2. 2.
    Hicks, D.: Evolving Regimes of Multi-University Research Evaluation. Higher Education 57, 393–404 (2009)CrossRefGoogle Scholar
  3. 3.
    Barker, K.: The UK Research Assessment Exercise: the Evolution of a National Research Evaluation System. Research Evaluation 16(1), 3–12 (2007)CrossRefGoogle Scholar
  4. 4.
    Moed, H.F.: The Future of Research Evaluation Rests with an Intelligent Combination of Advanced Metrics and Transparent Peer Review. Science and Public Policy 34(8), 575–583 (2007)CrossRefGoogle Scholar
  5. 5.
    Sala, A., Landoni, P., Verganti, R.: R&D networks: an evaluation framework. International Journal of Technology Management 53(1), 19–43 (2011)CrossRefGoogle Scholar
  6. 6.
    Tsolakidis, A., Sgouropoulou, C., Xydas, I., Terraz, O., Miaoulis, G.: Academic Research Policy-making and Evaluation using Graph Visualisation. In: 15th Panhellenic Conference on Informatics (PCI), pp. 28–32 (2011)Google Scholar
  7. 7.
    Van Looy, B., Landoni, P., Callaert, J., Van Pottelsberghe, B., Sapsalis, E., Debackere, K.: Entrepreneurial Effectiveness of European Universities: An Empirical Assessment of Antecedents and Trade-Offs. Research Policy 40, 553–564 (2011)CrossRefGoogle Scholar
  8. 8.
    Garcia-Aracil, A., Palomares-Montero, D.: Examining benchmark indicator systems for the evaluation of higher education institutions. Higher Education 60, 217–234 (2010)CrossRefGoogle Scholar
  9. 9.
    Shimizu, T., de Carvalho, M.M., Laurindo, F.J.B.: Strategic Alignment Process and Decision Support Systems: Theory and Case Studies. Idea Group Inc. (2006)Google Scholar
  10. 10.
    Burke, E.K., Kendall, G.: Search Methodologies. Introductory Tutorials in Optimization and Decision Support Techniques. Springer Science and Business Media (2005)Google Scholar
  11. 11.
    Chen, Z.: Computational Intelligence for Decision Support. CRC Press, LLC (2000)Google Scholar
  12. 12.
    Doumpos, M., Zopounidis, C.: Multicriteria Decision Aid Classification Methods. Kluwer Academic Publishers (2004)Google Scholar
  13. 13.
    Forgionne, G.A.: An Architecture for the Integration of Decision Making Support Functionalities. In: Decision Making Support Systems: Achievements, Trends and Challenges for the New Decade. Idea Group Inc. (2003); Gago, P., Santos, M.F.: Closed Loop Knowledge Discovery for Decision Support in Intensive Care Medicine. In: 13th WSEAS International Conference on Recent Advances in Computers, pp. 447–452. WSEAS PressGoogle Scholar
  14. 14.
    Grünig, R., Kühn, R.: Successful Decision-making. A Systematic Approach to Complex Problems. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Gupta, J., Forgionne, G.A., Mora, M.T.: Intelligent Decision-making Support Systems. In: Foundations, Applications and Challenges. Springer (2006)Google Scholar
  16. 16.
    Hashim, F., Alam, G.M., Siraj, S.: Ensuring participatory based decision-making practice in Higher Education through E-management: A faculty initiative. In: Recent Advances in E-Activities, Information, Security and Privacy. WSEAS PressGoogle Scholar
  17. 17.
    Yi, J.S., Ah Kang, Y., Stasko, J., Jacko, J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics 13(6), 1224–1231 (2007)CrossRefGoogle Scholar
  18. 18.
    Marks, J., Andalman, B., Beardsley, P.A., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., Shieber, S.: Design galleries: a general approach to setting parameters for computer graphics and animation. In: SIGGRAPH 1997, NY, pp. 389–400 (1997)Google Scholar
  19. 19.
    Younesy, J., Moller, T., Carr, H.: Visualization of time-varying volumetric data using differential time-histogram table. In: Fourth International Workshop on Volume Graphics, pp. 21–224 (2005)Google Scholar
  20. 20.
    Giacomo, E.D., Didimo, W., Grilli, L., Liotta, G.: Graph visualization techniques for web clustering engines. IEEE Transactions on Visualization and Computer Graphics 13(2), 294–304 (2007)CrossRefGoogle Scholar
  21. 21.
    Weber, G., Bremer, P.-T., Pascucci, V.: Topological landscapes: A terrain metaphor for scientific data. IEEE Transactions on Visualization and Computer Graphics 13(6), 1416–1423 (2007), An interdisciplinary national network, CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Lassila, O., Swick, R.: Resource Description Framework (RDF) model and syntax specification. Tech. rep. (1998)Google Scholar
  24. 24.
    Data-Driven Documents,
  25. 25.
    Pellet Reasoner for Java,
  26. 26.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semantics 5(2), 51–53 (2007)CrossRefGoogle Scholar
  27. 27.
    Siirtola, H., Rih, K.: Discussion: Interacting with parallel coordinates. Interact. Comput. 18(6), 12781309 (2006)CrossRefGoogle Scholar
  28. 28.
    Zakaria, N.F., Dahlan, H.M., Hussin, A.R.C.: Deriving Priority in AHP using Evolutionary Computing Approach. WSEAS Transactions on Information Science and Applications 7(5), 714–724 (2010)Google Scholar
  29. 29.
    Inselberg, A.: Visual Data Mining with Parallel Coordinates. Computational Statistics 13(1), 47–63 (1998)MATHGoogle Scholar
  30. 30.
    Wegman, E.J.: Hyperdimensional Data Analysis using Parallel Coordinates. JASA 85, 664–675 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anastasios Tsolakidis
    • 1
    • 2
  • Cleo Sgouropoulou
    • 2
  • Effie Papageorgiou
    • 2
  • Olivier Terraz
    • 1
  • Georgios Miaoulis
    • 1
    • 2
  1. 1.Laboratoire XLIM, CNRS, UMR 6172Université de LimogesLimogesFrance
  2. 2.Technological Education Institute of AthensEgaleoGreece

Personalised recommendations