Price and Volatility Using High-Frequency Data

  • Gilles Zumbach
Part of the Springer Finance book series (FINANCE)


It is often assumed that the price time series have a well-defined continuum limit and that high-frequency data bring us closer to this limit. But because of the discrete trading process, a new incoherent term need to be added to the hypothetical continuum prices. This term limits severely the amount of information that can be extracted from high-frequency time series. This chapter presents various ways to remove the incoherent term in order to obtain estimators based only on the continuous price, consistent with estimators at lower frequencies. This is essential for the volatility, which otherwise is strongly biased upward when using the naive estimators. Various high-frequency volatility estimators are presented, based either on multiple time scales or on lagged covariances. Estimators for the hypothetical underlying prices are also discussed, as well as estimators of the volatility per tick.


Noise Term Implied Volatility Double Auction Price Path Volatility Forecast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    Aït-Sahalia, Y., Jacod, J.: Testing for jumps in a discretely observed process. Ann. Stat. 37, 184–222 (2009) zbMATHCrossRefGoogle Scholar
  2. 7.
    Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: Great realizations. Risk 13, 105–108 (2000) Google Scholar
  3. 8.
    Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: Modeling and forecasting realized volatility. Econometrica 71, 529–626 (2003) MathSciNetCrossRefGoogle Scholar
  4. 15.
    Bandi, F., Russell, J.R.: Separating market microstructure noise from volatility. J. Financ. Econ. 79, 655–692 (2006) CrossRefGoogle Scholar
  5. 16.
    Barndorff-Nielsen, O., Hansen, P.H., Shephard, N.: Designing realized kernels to measure the ex-post variation of equity prices in the presence of noise. Technical report, Stanford University (2006) Google Scholar
  6. 28.
    Bouchaud, J.-P.: The endogenous dynamics of the markets: price impact and feedback loops. Technical report (2010). arXiv:1009.2928
  7. 30.
    Bouchaud, J.-P., Gefen, Y., Potters, M., Wyart, M.: Fluctuations and response in financial markets: the subtle nature of ‘random’ price changes. Quant. Finance 4(2), 176–190 (2004) Google Scholar
  8. 46.
    Corsi, F., Zumbach, G., Müller, U.A., Dacorogna, M.M.: Consistent high-precision volatility from high-frequency data. Econ. Notes, Rev. Bank. Finance Monet. Econ. 30(2), 183–204 (2001) Google Scholar
  9. 47.
    Curci, G., Corsi, F.: Discrete sine transform for multiscale realized volatility measures. Quant. Finance (2011) Google Scholar
  10. 65.
    Farmer, J.D., Gerig, A., Lillo, F., Mike, S.: Market efficiency and the long-memory of supply and demand: is price impact variable and permanent or fixed and temporary. Quant. Finance 2(6), 107–112 (2006) MathSciNetCrossRefGoogle Scholar
  11. 78.
    Hansen, P.R., Lunde, A.: Realized variance and market microstructure noise. J. Bus. Econ. Stat. 24, 127–161 (2006) MathSciNetCrossRefGoogle Scholar
  12. 104.
    McAleer, M., Medeiros, M.C.: Realized volatility: a review. Econom. Rev. 27, 10–45 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 107.
    Merton, R.C.: On estimating the expected return on the market: an exploraty investigation. J. Financ. Econ. 8, 323–361 (1980) CrossRefGoogle Scholar
  14. 111.
    Moro, E., Vicente, J., Mayano, L.G., Gerig, A., Farmer, J.D., Vaglica, G., Lillo, F., Mantegna, R.N.: Market impact and trading profile of hidden orders in stock markets. Phys. Rev. E 6(80), 1–8 (2009) Google Scholar
  15. 119.
    Phillips, P.C.B., Yu, J.: Discussion of Hansen & Lunde. J. Bus. Econ. Stat. 24, 202–208 (2006) CrossRefGoogle Scholar
  16. 133.
    Roll, R.: A simple implicit measure of the effective bid-ask spread in an efficient market. J. Finance 39(4), 1127–1139 (1984) CrossRefGoogle Scholar
  17. 134.
    Rosenbaum, M.: A new microstructure noise index. Quant. Finance 11(6), 883–899 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 144.
    Wyart, M., Bouchaud, J.-P., Kockelkoren, J., Potters, M., Vettorazzo, M.: Relation between bid-ask spread, impact and volatility in order driven markets. Quant. Finance 8(1), 41–57 (2008) zbMATHCrossRefGoogle Scholar
  19. 146.
    Zhang, L.: Efficient estimation of stochastic volatility using noisy observations: a multi-scales approach. Bernoulli 12, 1019–1043 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 147.
    Zhang, L., Mykland, P.A., Aït-Sahalia, Y.: A tale of two time scales: determining integrated volatility with noisy high frequency data. J. Am. Stat. Assoc. 100, 1394–1411 (2005) zbMATHCrossRefGoogle Scholar
  21. 149.
    Zhou, B.: High-frequency data and volatility in foreign-exchange rates. J. Bus. Econ. Stat. 14(1), 45–52 (1996) Google Scholar
  22. 151.
    Zumbach, G.: How the trading activity scales with the company sizes in the FTSE 100. Quant. Finance 4, 441–456 (2004) CrossRefGoogle Scholar
  23. 162.
    Zumbach, G., Corsi, F., Trapletti, A.: Efficient estimation of volatility using high frequency data. Technical report (2002). Available at

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gilles Zumbach
    • 1
  1. 1.Consulting in Financial ResearchSaconnex d’ArveSwitzerland

Personalised recommendations