Nanoenergy pp 153-177 | Cite as

Nanocomposites from V2O5 and Lithium Ion Batteries

  • Fritz Huguenin
  • Ana Rita Martins
  • Roberto Manuel Torresi


In this chapter, V2O5 xerogel and nanocomposites of V2O5 and polymers as well as the charge storage properties are described and discussed, aiming their use as cathode for lithium ion batteries. First, the different synthesis methods are presented, emphasizing the sol–gel methods via vanadates and vanadium alkoxides. Structural aspects are briefly mentioned to a better comprehension of lithium ion insertion/deinsertion, which influence on the electrochemical properties, and consequently, on the charge capacity of electrodes formed of V2O5. Nanostructured materials such as nanorolls, nanobelts, nanowires, and ordered nanorods arrays have been prepared and studied to increase the specific capacity, energy density, and power density. Moreover, the intimate contact between the nanocomposite components can also guarantee the enhancement of these properties so that these materials can be used in lithium ion batteries. Intermolecular interactions are also investigated to explain the performance of these positive electrodes. Various polymers have been used in these nanomaterials to increase the electronic conductivity as well as the ionic diffusion, and/or electrochemical stability.


Specific Capacity Propylene Carbonate Vanadium Oxide Vanadium Pentoxide Electrochemical Quartz Crystal Microbalance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from FAPESP, CNPq, and Capes is gratefully acknowledged.


  1. 1.
    Cheng F, Tao Z, Liang J, Chen J (2008) Chem Mater 20:667CrossRefGoogle Scholar
  2. 2.
    Tarascon J-M, Armand M (2001) Nature 414:359CrossRefGoogle Scholar
  3. 3.
    Bruce PG, Scrosati B, Tarascon J-M (2008) Angew Chem Int Ed 47:2930CrossRefGoogle Scholar
  4. 4.
    Wang Y, Cao G (2008) Adv Mater 20:2251CrossRefGoogle Scholar
  5. 5.
    Liu C, Li F, Ma LP, Cheng H-M (2010) Adv Mater 22:E28CrossRefGoogle Scholar
  6. 6.
    Li H, Wang Z, Xeng L, Huang X (2009) Adv Mater 21:4593CrossRefGoogle Scholar
  7. 7.
    Guo Y-G, Hu J-S, Wan L-J (2008) Adv Mater 20:2878CrossRefGoogle Scholar
  8. 8.
    Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovkii YF, Kotomin EA, Maier J (2006) J Power Sources 159:171CrossRefGoogle Scholar
  9. 9.
    Armand M, Tarascon J-M (2008) Nature 451:652CrossRefGoogle Scholar
  10. 10.
    Whittingham MS (2004) Chem Rev 104:4271CrossRefGoogle Scholar
  11. 11.
    Tarascon J-M (2010) Philosophical Transactions of the Royal Society A: Mathematical. Physics & Engineering Science 368:3227CrossRefGoogle Scholar
  12. 12.
    Brodd RJ, Bullock KR, Leising RA, Middaugh RL, Miller JR, Takeuchi E (2004) J Electrochem Soc 151:K1CrossRefGoogle Scholar
  13. 13.
    Whittingham MS (1976) Science 192:1126CrossRefGoogle Scholar
  14. 14.
    Rao BML, Francis RW, Christopher HA (1977) J Electrochem Soc 124:1490CrossRefGoogle Scholar
  15. 15.
    Nagaura T, Tozawa K (1990) Prog Batteries Solar Cells 9:209Google Scholar
  16. 16.
    Ozawa K (1994) Solid State Ion 69:212CrossRefGoogle Scholar
  17. 17.
    Goodenough JB, Mizuchima K (1981) U.S. Patent 4,302,518Google Scholar
  18. 18.
    Ohzuku T (1995) Lithium batteries: new materials, developments and perspectives. In: Pistoia G (ed), vol. 5, 2a Ed, p 239, Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Tarascon JM, Armand M (2001) Nature 414:359–367 Google Scholar
  20. 20.
    Livage J (1991) Chem Mater 3:578CrossRefGoogle Scholar
  21. 21.
    Pereira-Ramos JP, Baffier N, Pistoia G (1995) Lithium batteries: new materials, developments and perspectives. In: Pistoia G (ed), vol. 5, 2a Ed, p 281, Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Manthiram A, Kim J (1998) Chem Mater 10:2895CrossRefGoogle Scholar
  23. 23.
    Owens BB, Smyrl WH, Xu JJ (1999) J Power Sources 81:150CrossRefGoogle Scholar
  24. 24.
    Whittingham MS (1976) J Electrochem Soc 123:315CrossRefGoogle Scholar
  25. 25.
    Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) J Mater Chem 19:2526CrossRefGoogle Scholar
  26. 26.
    Ostermann W (1922) Wiss Ind Hamburg 1:17Google Scholar
  27. 27.
    Müller E, Chem Z (1911) Ind Kolloide 8:302CrossRefGoogle Scholar
  28. 28.
    Gharbi N, R’Kha C, Ballutaud D, Michaud M, Livage J, Audiere JP, Shiffmacher G, Non-Cryst J (1981) Solids 46:247Google Scholar
  29. 29.
    Sanchez C, Livage J, Audière JP, Madi A, Non-Cryst J (1984) Solids 65:285Google Scholar
  30. 30.
    Kittaka S, Sasaki S, Ogawa N, Uchida N (1988) J Solis State Chem 76:40CrossRefGoogle Scholar
  31. 31.
    Livage J (1999) Coord Chem Rev 190:391CrossRefGoogle Scholar
  32. 32.
    Legendre JJ, Livage J (1983) J Colloid Interface Sci 94:75CrossRefGoogle Scholar
  33. 33.
    Pelletier O, Davidson P, Bourgaux C, Coulon C, Regnault S, Livage J (2000) Langmuir 16:5295CrossRefGoogle Scholar
  34. 34.
    Livage J, Henry M, Sanchez C (1988) Prog Solid St Chem 18:259CrossRefGoogle Scholar
  35. 35.
    Legendre JJ, Livage J (1983) J Coll Int Sci 94:75CrossRefGoogle Scholar
  36. 36.
    Legendre JJ, Livage J (1983) J Coll Bit Sci 94:84Google Scholar
  37. 37.
    Yao T, Oka Y, Yamamoto N (1992) Mater Res Bull 116:279Google Scholar
  38. 38.
    Giorgetti M, Passerini S, Smyrl WH (2000) Inorg Chem 39:1514CrossRefGoogle Scholar
  39. 39.
    Bullot J, Gallais O, Gauthier M, Livage J (1980) Appl Phys Lett 36:986CrossRefGoogle Scholar
  40. 40.
    Bullot J, Cordier P, Gallais O, Gauthier M, Livage J (1981) Phys Stat Sol 68:357CrossRefGoogle Scholar
  41. 41.
    Sanchez C, Morineau R, Livage J (1983) Phys Stat Sol 76:661CrossRefGoogle Scholar
  42. 42.
    Sanchez C, Babonneau F, Morineau R, Livage J (1983) Phil Mag B 47:279Google Scholar
  43. 43.
    Livage J (1996) Solid States Ion 86:935CrossRefGoogle Scholar
  44. 44.
    Anaissi FJ Demets GJ–F, Alvarez EB, Politi MJ, Toma HE (2001) Electrochim Acta 47:441Google Scholar
  45. 45.
    Bardoux P, Morineau R, Livage J (1988) Solid State Ion 27:221CrossRefGoogle Scholar
  46. 46.
    Bullot J, Cordier P, Gallais O, Gauthier M, Non-Cryst J (1984) Solids 68:135Google Scholar
  47. 47.
    Baddour R, Pereira-Ramos JP, Messina R, Perichon J (1991) J Electroanal Chem 314:81CrossRefGoogle Scholar
  48. 48.
    Tipton AL, Passerini S, Owens BB, Smyrl WH (1996) J Electrochem Soc 143:3473CrossRefGoogle Scholar
  49. 49.
    Park H–K, Smyrl WH Ward MD (1995) J Electrochem Soc 142:1068Google Scholar
  50. 50.
    Mège S, Levieux Y, Ansart F, Savariault JM, Rousset A (2000) J Appl Electrochem 30:657CrossRefGoogle Scholar
  51. 51.
    Parent MJ, Passerini S, Owens BB, Smyrl WH (1999) J Electrochem Soc 146:1346CrossRefGoogle Scholar
  52. 52.
    Dong W, Rolison DR, Dunn B (2000) Electrochem Solid State Lett 3:457CrossRefGoogle Scholar
  53. 53.
    Park HK, Smyrl WH (1994) J Electrochem Soc 141:L25CrossRefGoogle Scholar
  54. 54.
    Le DB, Passerini S, Tipton AL, Owens BB, Smyrl WH (1995) J Electrochem Soc 142:L102CrossRefGoogle Scholar
  55. 55.
    Owens BB, Passerini S, Smyrl WH (1999) Electrochim Acta 45:215CrossRefGoogle Scholar
  56. 56.
    Passerini S, Smyrl WH, Berrettoni M, Tossici R, Rosolen M, Marassi R, Decker F (1996) Solid State Ion 90:5CrossRefGoogle Scholar
  57. 57.
    Le DB, Passerini S, Guo J, Ressler J, Owens BB, Smyrl WH (1996) J Electrochem Soc 143:2099CrossRefGoogle Scholar
  58. 58.
    Lemordant D, Bouhaouss A, Aldebert P, Baffier N (1986) J Chim Phys 83:105Google Scholar
  59. 59.
    Hupp J (2001) Interface 10:21Google Scholar
  60. 60.
    Lu Y, Lang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Nature 410:913CrossRefGoogle Scholar
  61. 61.
    Chadwick AV (2000) Nature 408:925CrossRefGoogle Scholar
  62. 62.
    Nazar LF, Goward G, Leroux F, Duncan M, Huang H, Kerr T, Gaubicher J (2001) Intern. J Inorg Mater 3:191CrossRefGoogle Scholar
  63. 63.
    Bourgeat-Lami E (2002) J Nanosci Nanotech 2:1CrossRefGoogle Scholar
  64. 64.
    Maia DJ, De Paoli MA, Alves OL, Zarbin AJG, das Neves S Quim Nova 23 (2000) 204Google Scholar
  65. 65.
    Gimenez IF, Alves OL, Brazil J (1999) Chem Soc 10:167Google Scholar
  66. 66.
    Kryszewski M (2000) Synthetic Met 109:47CrossRefGoogle Scholar
  67. 67.
    Wang Y, Cao G (2006) Chem Mater 18:2787CrossRefGoogle Scholar
  68. 68.
    Patrissi CJ, Martini CR (1999) J Electrochem Soc 146:3176CrossRefGoogle Scholar
  69. 69.
    Spahr ME, Bitterli PS, Nesper R, Haas O, Novák P (1999) J Electrochem Soc 145:2780CrossRefGoogle Scholar
  70. 70.
    Wang Y, Takahashi K, Shang H, Cao G (1995) J Phys Chem B 109:3085CrossRefGoogle Scholar
  71. 71.
    Lee K, Wang Y, Cao GZ (2005) J Phys Chem B 109:16700CrossRefGoogle Scholar
  72. 72.
    Gangopadhyay R, De A (2000) Chem Mater 12:608CrossRefGoogle Scholar
  73. 73.
    Kerr TA, Wu H, Nazar LF (1996) Chem Mater 8:2005CrossRefGoogle Scholar
  74. 74.
    Nazar LF, Wu H, Power WP (1993) J Mater Chem 5:1985CrossRefGoogle Scholar
  75. 75.
    Kanatzidis MG, Marcy HO, McCarthy WJ, Kannewurf CR, Marks TJ (1989) Solid States Ion 32:594CrossRefGoogle Scholar
  76. 76.
    Maia DJ, Das Neves S, Alves OL, De Paoli MA (1999) Synth Met 102:1153CrossRefGoogle Scholar
  77. 77.
    Maia DJ, Alves OL, De Paoli MA (1997) Synth Met 90:37Google Scholar
  78. 78.
    Wu CG, DeGroot DC, Marcy HO, Schindler JL, Kannewurf CR, Bakas T, Papaefthymiou V, Hirpo W, Yesinowski JP, Liu YJ, Kanatzidis MG (1995) J Am Chem Soc 117:9229Google Scholar
  79. 79.
    Liu YJ, Kanatzidis MG (1995) Chem Mater 7:1525Google Scholar
  80. 80.
    Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP (1995) Adv Mater 7:154CrossRefGoogle Scholar
  81. 81.
    Oriakhi CO, Lerner MM (1996) Chem Mater 8:2016CrossRefGoogle Scholar
  82. 82.
    Kerr TA, Leroux F, Nazar LF (1998) Chem Mater 10:2588CrossRefGoogle Scholar
  83. 83.
    Schöllhorn R (1996) Chem Mater 8:1747CrossRefGoogle Scholar
  84. 84.
    Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S (1997) Chem Mater 9:2354CrossRefGoogle Scholar
  85. 85.
    Harreld J, Wong HP, Dave BC, Dunn B, Nazar LF (1998) J Non-Cryst Solids 225:319CrossRefGoogle Scholar
  86. 86.
    Lira-Cantú M, Gómez-Romero P (1999) J Solid State Chem 147:601CrossRefGoogle Scholar
  87. 87.
    Oliveira HP, Graeff CFO, Brunello CA, Guerra EM (2000) J Non-Cryst Solids 273:193CrossRefGoogle Scholar
  88. 88.
    Posudievsky OY, Biskulova SA, Pokhodenko VD (2004) J Mater Chem 14:1419CrossRefGoogle Scholar
  89. 89.
    Guerra EM, Brunello CA, Graeff CFO, Oliveira HP (2002) J Solid State Chem 168:134CrossRefGoogle Scholar
  90. 90.
    Demets GJF, Toma HE (2003) Electrochem Commun 5:73Google Scholar
  91. 91.
    Yatabe T, Matsubayashi G (1996) J Mater Chem 6:1849CrossRefGoogle Scholar
  92. 92.
    Wang J, Gonsalves KE (1999) J Comb Chem 1:216CrossRefGoogle Scholar
  93. 93.
    Kanatzidis MG, Wu C-G, Marcy HO, Kannewurf CR (1989) J Am Chem Soc 111:4139CrossRefGoogle Scholar
  94. 94.
    Wu CG, Kanatzidis MG, Marcy HO, DeGroot DC, Kannewurf CR (1989) Polim Mater Sc. Eng 61:969Google Scholar
  95. 95.
    Liu YJ, DeGroot DC, Schindler JL, Kannewurf CR, Kanatzidis MG (1993) J Chem Soc Chem Commun 3:593Google Scholar
  96. 96.
    Wu C-G, DeGroot DC, Marcy HO, Schindler JL, Kannewurf CR, Liu Y-J, Hirpo W, Kanatzidis MG (1996) Chem Mat 8:1992CrossRefGoogle Scholar
  97. 97.
    Somani PR, Marimuthu R, Mandale AB (2001) Polymer 42:2991CrossRefGoogle Scholar
  98. 98.
    Ferreira M, Zucolotto V, Huguenin F, Torresi RM, Oliveira ON Jr (2002) J Nanosci Nanotech 2:29CrossRefGoogle Scholar
  99. 99.
    Ferreira M, Huguenin F, Zucolotto V, da Silva JEP, de Torresi SIC, Temperini MLA, Torresi RM, Oliveira ON Jr (2003) J Phys Chem B 107:8351CrossRefGoogle Scholar
  100. 100.
    Li ZF, Ruckenstein E (2002) Langmuir 18:6956CrossRefGoogle Scholar
  101. 101.
    Leroux F, Koene BE, Nazar LF (1996) J Electrochem Soc 143:L181CrossRefGoogle Scholar
  102. 102.
    Leurox F, Goward G, Power WP, Nazar LF (1997) J Electrochem Soc 144:3886CrossRefGoogle Scholar
  103. 103.
    Lira-Cantú M, Gómez-Romero P (1999) J Electrochem Soc 146:2029CrossRefGoogle Scholar
  104. 104.
    Kuwabata S, Idzu T, Martin CR, Yoneyama H (1998) J Electrochem Soc 145:2707CrossRefGoogle Scholar
  105. 105.
    Huguenin F, Torresi RM, Buttry DA (2002) J Electrochem Soc 149:A546CrossRefGoogle Scholar
  106. 106.
    Varela H, Torresi RM (2000) J Electrochem Soc 147:665CrossRefGoogle Scholar
  107. 107.
    Lira-Cantú M, Gómez-Romero P (1999) Int J Inorg Mat 1:111CrossRefGoogle Scholar
  108. 108.
    Huguenin F, Torresi RM, Buttry DA, da Silva JEP, de Torresi SIC (2001) Electrochem Acta 46:3555CrossRefGoogle Scholar
  109. 109.
    Varela H, Huguenin F, Malta M, Torresi RM (2002) Quim Nova 25:287CrossRefGoogle Scholar
  110. 110.
    McKinnon WR (1995) In: Solid State Electrochemistry; Bruce PG (ed) Cambridge University Press, Cambridge p 163Google Scholar
  111. 111.
    Huguenin F, Ticianelli EA, Torresi RM (2002) Electrochim Acta 47:3179CrossRefGoogle Scholar
  112. 112.
    Holland GP, Yarger JL, Buttry DA, Huguenin F, Torresi RM (2003) J Electrochem Soc 150:A1718CrossRefGoogle Scholar
  113. 113.
    Holland GP, Buttry DA, Yarger YL (2002) Chem Mater 14:3875CrossRefGoogle Scholar
  114. 114.
    Huguenin F, Torresi RM (2008) J Phys Chem C 112:2202CrossRefGoogle Scholar
  115. 115.
    Goward GR, Leroux F, Nazar LF (1998) Electrochim Acta 43:1307CrossRefGoogle Scholar
  116. 116.
    Wong HP, Dave BC, Leroux F, Harreld J, Dunn B, Nazar LF (1998) J Mater Chem 8:1019CrossRefGoogle Scholar
  117. 117.
    Huguenin F, Girotto EM, Torresi RM, Buttry DA (2002) J Electroanal Chem 536:37CrossRefGoogle Scholar
  118. 118.
    Harreld JH, Dunn B, Nazar LF (1999) Int J Inorg Mater 1:135CrossRefGoogle Scholar
  119. 119.
    Demets GJF, Anaissi FJ, Toma HE (2000) Electrochim Acta 46:547CrossRefGoogle Scholar
  120. 120.
    Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) J Power Sources 196:3331CrossRefGoogle Scholar
  121. 121.
    Murugan AV, Kale BB, Kwon C-W, Campet G, Vijayamohanan K (2001) J Mater Chem 11:2470CrossRefGoogle Scholar
  122. 122.
    Kwon CW, Murugan AV, Campet G, Portier J, Kale BB, Vijaymohanan K, Choy JH (2002) Electrochem Commun 4:384Google Scholar
  123. 123.
    Kuwubata S, Tomiyori M (2002) J Electrochem Soc 149:A988CrossRefGoogle Scholar
  124. 124.
    Ponzio EA, Benedetti TM, Torresi RM (2007) Electrochim Acta 52:4419CrossRefGoogle Scholar
  125. 125.
    Malta M, Torresi RM (2005) Electrochim Acta 50:5009CrossRefGoogle Scholar
  126. 126.
    Chun-Guey W, Jiunn-Yih H, Shui-Sheng H (2001) J Mater Chem 11:2061CrossRefGoogle Scholar
  127. 127.
    Huguenin F, Girotto EM, Ruggeri G, Torresi RM (2003) J Power Sources 114:133CrossRefGoogle Scholar
  128. 128.
    Wang GC, Zhao J, Li XW, Li CZ, Yuan WK (2008) Synth Met 159:366CrossRefGoogle Scholar
  129. 129.
    Liu M, Visco SJ, De Jonghe LC (1991) J Electrochem Soc 138:1891CrossRefGoogle Scholar
  130. 130.
    Shouji E, Buttry DA (1999) Langmuir 15:669CrossRefGoogle Scholar
  131. 131.
    Park NG, Ryu KS, Park YJ, Kang MG, Kim DK, Kang SG, Kim KM, Chang SH (2002) J Power Sources 103:273Google Scholar
  132. 132.
    Liu YJ, Schindler JL, Degroot DC, Kannewurf CR, Hirpo W, Kanatzidis MG (1996) Chem Mat 8:525CrossRefGoogle Scholar
  133. 133.
    Ruiz-Hitzky E, Aranda P, Casal B (1992) J Mater Chem 2:581CrossRefGoogle Scholar
  134. 134.
    Chen W, Xu Q, Hu YS, May LQ, Zhu QY (2002) J Mater Chem 12:1926CrossRefGoogle Scholar
  135. 135.
    Jin AP, Zhu QY, Chen W, Volkov VL, Zakharova GS, Liu HX, Zhou J, Xu Q (2007) Solid State Phenom 124:363CrossRefGoogle Scholar
  136. 136.
    Jin A, Chen W, Zhou Q, Yang Y, Volkov VL, Zakharova GS (2008) Solid State Ion 179:1256CrossRefGoogle Scholar
  137. 137.
    Lutkenhaus JL, Hammond PT (2007) Soft Mater 3:804CrossRefGoogle Scholar
  138. 138.
    Galiote NA, Huguenin F (2007) J Phys Chem C 111:14911CrossRefGoogle Scholar
  139. 139.
    Huguenin F, Ferreira M, Zucolotto V, Nart FC, Torresi RM, Oliveira ON (2004) Chem Mater 16:2293CrossRefGoogle Scholar
  140. 140.
    Huguenin F, Santos DS, Bassi A, Nart FC, Oliveira ON (2004) Adv Func Mater 14:985CrossRefGoogle Scholar
  141. 141.
    Huguenin F, Nart FC, Gonzalez ER, Oliveira ON (2004) J Phys Chem B 108:18919CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fritz Huguenin
    • 1
  • Ana Rita Martins
    • 1
  • Roberto Manuel Torresi
    • 2
  1. 1.Departamento de Química, Faculdade de FilosofiaCiências e Letras de Ribeirão Preto, Universidade de São PauloRibeirão Preto–SPBrazil
  2. 2.Instituto de QuímicaUniversidade de São PauloSão Paulo–SPBrazil

Personalised recommendations