Nanoenergy pp 125-151 | Cite as

Recent Advances on Nanostructured Electrocatalysts for Oxygen Electro-Reduction and Ethanol Electro-Oxidation

  • Fabio H. B. Lima
  • Daniel A. Cantane


In this chapter, we review the development of electrocatalysts for electrochemical reactions that take place in low temperature fuel cells. It is focused on the oxygen reduction reaction (ORR), and on the ethanol oxidation reaction (EOR) for proton and anion exchange membrane electrolytes. For the ORR, which takes place at the fuel cell cathode, the major problem is the low platinum mass-activity, and its low long-term stability. In this manuscript, it is reviewed the activity of a new class electrocatalysts that are composed by platinum sub-monolayer deposited on metal nanoparticles, including the correlation of their activity with the center of the Pt d-band. Finally, it is presented stability tests for some ORR electrocatalysts. For the ethanol electro-oxidatation (EOR), on platinum-based electrocatalysts, in required conditions of ethanol concentration and temperature for practical applications, the reaction undergoes parallel reactions, producing acetaldehyde, and acetic acid as major products, instead of CO2, reducing drastically the fuel cell efficiency. So, the central challenge for the EOR is the development of more efficient nanostructured electrocatalysts. The recent achievements for the EOR, catalyzed by different nanostructured materials, are presented for acid and alkaline media.


Oxygen Reduction Reaction Ethanol Oxidation Oxygen Reduction Reaction Activity Alkaline Electrolyte Adsorbed Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



D.A. Cantane (No. 2009/11073-3) and F.H.B. Lima (No. 2008/05156-0) acknowledge support from Fundação de Amaparo à Pesquisa do Estado de São Paulo—FAPESP, Brazil.


  1. 1.
    Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29(11):1527–1537CrossRefGoogle Scholar
  2. 2.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley-Interscience, New York 431Google Scholar
  3. 3.
    Adzic R (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis, Wiley-VCH, New York, p 197Google Scholar
  4. 4.
    Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum- monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135CrossRefGoogle Scholar
  5. 5.
    Lima F, Zhang J, Shao M, Sasaki K, Vukmirovic M, Ticianelli E, Adzic R (2007) Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J Phys Chem C 111(1):404–410CrossRefGoogle Scholar
  6. 6.
    Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis–calculations and concepts. Adv Catal 45:71–129CrossRefGoogle Scholar
  7. 7.
    Greeley J, Nørskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53(1):319–348CrossRefGoogle Scholar
  8. 8.
    Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies. J Phys Chem 99(13):4577–4589CrossRefGoogle Scholar
  9. 9.
    Lima FHB, Ticianelli EA (2004) Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum-cobalt electrodes in alkaline media. Electrochim Acta 49(24):4091–4099CrossRefGoogle Scholar
  10. 10.
    Brankovic S, Wang J, Adzic R (2001) Pt submonolayers on Ru nanoparticles: a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem Solid-State Lett 4:A217CrossRefGoogle Scholar
  11. 11.
    Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang J, Nilekar AU, Mavrikakis M, Valerio J, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46(3):249–262CrossRefGoogle Scholar
  12. 12.
    Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(30):10955–10964CrossRefGoogle Scholar
  13. 13.
    Kitchin JR, Nørskov JK, Barteau MA, Chen J (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93(15):156801CrossRefGoogle Scholar
  14. 14.
    Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem 118(18):2963–2967CrossRefGoogle Scholar
  15. 15.
    Ruban A, Skriver HL, Nørskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59(24):15990CrossRefGoogle Scholar
  16. 16.
    Bardi U, Atrei A, Zanazzi E, Rovida G, Ross P (1990) Study of the reconstructed (001) surface of the Pt80Co20 alloy. Vaccum 41(1–3):437–440CrossRefGoogle Scholar
  17. 17.
    Mun BS, Watanabe M, Rossi M, Stamenkovic V, Markovic NM, Ross PN Jr (2005) A study of electronic structures of Pt3 M (M = Ti, V, Cr, Fe, Co., Ni) polycrystalline alloys with valence-band photoemission spectroscopy. J Chem Phys 123:204717-1–204717-4CrossRefGoogle Scholar
  18. 18.
    Markovic N, Gasteiger H, Grgur B, Ross P (1999) Oxygen reduction reaction on Pt (111): effects of bromide. J Electroanal Chem 467(1–2):157–163Google Scholar
  19. 19.
    Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley, New YorkGoogle Scholar
  20. 20.
    Chorkendorff I, Niemantsverdriet JW, Wiley J (2003) Concepts of modern catalysis and kinetics, vol 138. Wiley Online Library, WeinheimGoogle Scholar
  21. 21.
    Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M (2002) Universality in heterogeneous catalysis. J Catal 209(2):275–278CrossRefGoogle Scholar
  22. 22.
    Clouser S, Huang J, Yeager E (1993) Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J Appl Electrochem 23(6):597–605CrossRefGoogle Scholar
  23. 23.
    Yeager E, Gervasio D, Razaq M, Razaq A, Tryk D (1993) Dioxygen reduction in various acid electrolytes. Serb J Chem Soc 57:819Google Scholar
  24. 24.
    Sidik RA, Anderson AB (2002) Density functional theory study of O2 electroreduction when bonded to a Pt dual site. J Electroanal Chem 528(1–2):69–76Google Scholar
  25. 25.
    Sasaki K, Wang J, Balasubramanian M, McBreen J, Uribe F, Adzic R (2004) Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochim Acta 49(22–23):3873–3877CrossRefGoogle Scholar
  26. 26.
    Gong K, Su D, Adzic RR (2010) Platinum-monolayer shell on AuNi 0.5 Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J Am Chem Soc 132(41):14364–14366Google Scholar
  27. 27.
    Lima FHB, Zhang J, Shao M, Sasaki K, Vukmirovic M, Ticianelli E, Adzic R (2008) Pt monolayer electrocatalysts for O2 reduction: PdCo/C substrate-induced activity in alkaline media. J Solid State Electrochem 12(4):399–407CrossRefGoogle Scholar
  28. 28.
    Lima FHB, De Castro JFR, Santos LGRA, Ticianelli EA (2009) Electrocatalysis of oxygen reduction on carbon-supported Pt-Co nanoparticles with low Pt content. J Power Sources 190(2):293–300CrossRefGoogle Scholar
  29. 29.
    Obradovic M, Grgur B, Vracar LM (2003) Adsorption of oxygen containing species and their effect on oxygen reduction on Pt3Co electrode. J Electroanal Chem 548:69–78CrossRefGoogle Scholar
  30. 30.
    Zhang J, Sasaki K, Sutter E, Adzic R (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809):220CrossRefGoogle Scholar
  31. 31.
    Xing Y, Cai Y, Vukmirovic MB, Zhou WP, Karan H, Wang JX, Adzic RR (2010) Enhancing oxygen reduction reaction activity via Pd- Au alloy sublayer mediation of Pt monolayer electrocatalysts. J Phys Chem Lett 1:3238–3242Google Scholar
  32. 32.
    Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11(3):919–926Google Scholar
  33. 33.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105(2):283–296CrossRefGoogle Scholar
  34. 34.
    Iwasita T, Nart F (1997) In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 55(4):271–340CrossRefGoogle Scholar
  35. 35.
    De Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in situ FTIR techniques. J Phys Chem B 106(38):9825–9830CrossRefGoogle Scholar
  36. 36.
    Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M, Zhang J, Marinkovic N, Liu P, Frenkel A, Adzic R (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8(4):325–330CrossRefGoogle Scholar
  37. 37.
    Iwasita T, Pastor E (1994) A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta 39(4):531–537CrossRefGoogle Scholar
  38. 38.
    Xia X, Liess HD, Iwasita T (1997) Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem 437(1–2):233–240Google Scholar
  39. 39.
    Souza JPI, Queiroz SL, Nart FC (2000) The use of mass spectrometry in electrochemical measurements-the DEMS technique. Quim Nova 23(3):384–391CrossRefGoogle Scholar
  40. 40.
    Jiang L, Colmenares L, Jusys Z, Sun G, Behm R (2007) Ethanol electro-oxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt: Sn ratio. Electrochim Acta 53(2):377–389CrossRefGoogle Scholar
  41. 41.
    Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berná A, Herrero E, Feliu JM (2009) The role of the steps in the cleavage of the C–C bond during ethanol oxidation on platinum electrodes. Phys Chem Chem Phys 11(40):9114–9123CrossRefGoogle Scholar
  42. 42.
    Gao P, Chang SC, Zhou Z (1989) Electro-oxidation pathways of simple alcohols at platinum in pure nonaqueous and concentrated aqueous environments as studied by real-time ftir spectroscopy. J Electroanal Chem 272(1–2):161–178Google Scholar
  43. 43.
    Leung LWH, Chang SC, Weaver MJ (1989) Real-time FTIR spectroscopy as an electrochemical mechanistic probe: electro-oxidation of ethanol and related species on well-defined Pt (111) surfaces. J Electroanal Chem 266(2):317–336CrossRefGoogle Scholar
  44. 44.
    Bruckenstein S, Gadde RR (1971) Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products. J Am Chem Soc 93:793–794CrossRefGoogle Scholar
  45. 45.
    Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berná A, Herrero E, Feliu JM (2008) Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. Faraday Discuss 140:379–397CrossRefGoogle Scholar
  46. 46.
    Cantane DA, Gonzalez ER (2009) Mechanistic aspects of ethanol electro-oxidation in unsupported platinum nanoparticles. ECS Trans 25:1161–1168CrossRefGoogle Scholar
  47. 47.
    Giz MJ, Camara GA (2009) The ethanol electro-oxidation reaction at Pt (1 1 1): the effect of ethanol concentration. J Electroanal Chem 625(2):117–122CrossRefGoogle Scholar
  48. 48.
    Camara G, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578(2):315–321CrossRefGoogle Scholar
  49. 49.
    Lai SCS, Koper MTM (2008) Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discuss 140:399–416CrossRefGoogle Scholar
  50. 50.
    Sun S, Halseid MC, Heinen M, Jusys Z, Behm RJ (2009) Ethanol electro-oxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: a high-temperature/high-pressure DEMS study. J Power Sources 190(1):2–13CrossRefGoogle Scholar
  51. 51.
    Adzic RR, Li M, Kowal A, Sasaki K, Marinkovic N, Su D, Korach E, Liu P (2010) Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt: Rh: Sn ratios. Electrochim Acta 55(14):4331–4338Google Scholar
  52. 52.
    Lima FHB, Gonzalez ER (2008) Ethanol electro-oxidation on carbon-supported Pt-Ru, Pt-Rh and Pt-Ru-Rh nanoparticles. Electrochimica Acta 53(6):2963–2971CrossRefGoogle Scholar
  53. 53.
    Camara G, De Lima R, Iwasita T (2005) The influence of PtRu atomic composition on the yields of ethanol oxidation: a study by in situ FTIR spectroscopy. J Electroanal Chem 585(1):128–131CrossRefGoogle Scholar
  54. 54.
    Lima FHB, Profeti D, Lizcano-Valbuena W, Ticianelli EA, Gonzalez ER (2008) Carbon-dispersed Pt-Rh nanoparticles for ethanol electro-oxidation. Effect of the crystallite size and of temperature. J Electroanal Chem 617(2):121–129CrossRefGoogle Scholar
  55. 55.
    Houtman C, Barteau M (1991) Divergent pathways of acetaldehyde and ethanol decarbonylation on the Rh (111) surface. J Catal 130(2):528–546CrossRefGoogle Scholar
  56. 56.
    Kristian N, Wang X (2008) Ptshell-Aucore/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions. Electrochem Commun 10(1):12–15CrossRefGoogle Scholar
  57. 57.
    Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR (2007) Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports. Electrochem Commun 9(12):2848–2853CrossRefGoogle Scholar
  58. 58.
    Colmati F, Antolini E, Gonzalez ER (2008) Effect of thermal treatment on phase composition and ethanol oxidation activity of a carbon supported Pt50Sn50 alloy catalyst. J Solid State Electrochem 12(5):591–599CrossRefGoogle Scholar
  59. 59.
    Lima FHB, Profeti D, Chatenet M, Riello D, Ticianelli EA, Gonzalez ER (2010) Electro-oxidation of ethanol on Rh/Pt and Ru/Rh/Pt sub-monolayers deposited on Au/C nanoparticles. Electrocatalysis 1(1):72–82CrossRefGoogle Scholar
  60. 60.
    Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195(11):3431–3450CrossRefGoogle Scholar
  61. 61.
    Wang Y, Nguyen TS, Liu X, Wang X (2010) Novel palladium-lead (Pd-Pb/C) bimetallic catalysts for electro-oxidation of ethanol in alkaline media. J Power Sources 195(9):2619–2622CrossRefGoogle Scholar
  62. 62.
    Xu C, Hu Y, Rong J, Jiang SP, Liu Y (2007) Ni hollow spheres as catalysts for methanol and ethanol electro-oxidation. Electrochem Commun 9:2009–2012CrossRefGoogle Scholar
  63. 63.
    He Q, Mukerjee S, Shyam B, Ramaker D, Parres-Esclapez S, Illán-Gómez M, Bueno-López A (2009) Promoting effect of CeO2 in the electrocatalytic activity of rhodium for ethanol electro-oxidation. J Power Sources 193(2):408–415CrossRefGoogle Scholar
  64. 64.
    Bayer D, Berenger S, Joos M, Cremers C, Tübke J (2010) Electrochemical oxidation of C2 alcohols at platinum electrodes in acidic and alkaline environment. Int J Hydrogen Energy 35:12660–12667CrossRefGoogle Scholar
  65. 65.
    Rao V (2007) Investigation of the ethanol electro oxidation in alkaline membrane electrode assembly by differential electrochemical mass spectrometry. Fuel Cells 7(5):417–423CrossRefGoogle Scholar
  66. 66.
    Bayer D, Cremers C, Baltruschat H, Tübke J (2010) Ethanol stripping in alkaline medium: a DEMS study. ECS Trans 25:85–93CrossRefGoogle Scholar
  67. 67.
    Liang Z, Zhao T, Xu J, Zhu L (2009) Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta 54(8):2203–2208CrossRefGoogle Scholar
  68. 68.
    Wang E, Xu J, Zhao T (2010) Density functional theory studies of the structure sensitivity of ethanol oxidation on palladium surfaces. J Phys Chem C 114(23):10489–10497CrossRefGoogle Scholar
  69. 69.
    Fang X, Wang L, Shen PK, Cui G, Bianchini C (2010) An in situ fourier transform infrared spectroelectrochemical study on ethanol electro-oxidation on Pd in alkaline solution. J Power Sources 195(5):1375–1378CrossRefGoogle Scholar
  70. 70.
    Zhou ZY, Wang Q, Lin JL, Tian N, Sun SG (2010) In situ FTIR spectroscopic studies of electro-oxidation of ethanol on Pd electrode in alkaline media. Electrochim Acta 55:7995–7999CrossRefGoogle Scholar
  71. 71.
    Cantane DA, Ambrosio WF, Lima FHB (2011) Ethanol electro-oxidation catalyzed by Pt/C, Rh/C, and Pt overlayers on Rh/C. Effect of ethanol concentration and temperature. Electrocatalysis (Submitted)Google Scholar
  72. 72.
    Xu C, Tian Z, Shen P, Jiang SP (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Chemistry of Sao CarlosUniversity of Sao PauloSao PauloBrazil

Personalised recommendations