Nanoenergy pp 101-123 | Cite as

Biofuel Cells: Bioelectrochemistry Applied to the Generation of Green Electricity

  • Gabriel M. Olyveira
  • Rodrigo M. Iost
  • Roberto A. S. Luz
  • Frank N. Crespilho


Several studies published in the last decade have pointed to the use of enzymes and microorganisms in biocatalytic reactions to generate electricity. Enzymes and living organisms can be used in modified electrodes to build the so-called biofuel cells (BFCs). However, a deep understanding of the structure and biocatalytic properties after enzyme immobilization is still lacking because they are immobilized in the solid state and outside of their natural environment. Thus, based on biological molecules and nanostructure materials applied to BFCs, these current topics shall be reviewed here, and prospects for future development in these areas will be presented as well. Moreover, immobilization methodologies and enzyme stability systems that result in BFCs will also be presented. Finally, BFC power density and catalyst support will be widely discussed in this book chapter.


Fuel Cell Modify Electrode Microbial Fuel Cell Flavin Adenine Dinucleotide Redox Mediator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hubenova Y, Mitov M (2010) Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry 78:57–61CrossRefGoogle Scholar
  2. 2.
    Giroud F, Gondran C, Gorgy K, Pellissier A, Lenouvel F, Cinquin P, Cosnier S (2010) A quinhydrone biofuel cell based on an enzyme-induced pH gradient. J Power SourGoogle Scholar
  3. 3.
    Liu Y, Dong S (2007) A biofuel cell with enhanced power output by grape juice. Electrochem Commun 9:1423–1427CrossRefGoogle Scholar
  4. 4.
    Katz E, Shipway AN, Willner I (2003) Biochemical fuel cells. Handbook of fuel cells—fundamentals, technology and applications, vol 1. Wiley, New York, pp 355–381Google Scholar
  5. 5.
    Katz E, Atanassov P (2010) Biofuel cells. Electroanalysis 22:723–724CrossRefGoogle Scholar
  6. 6.
    Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045CrossRefGoogle Scholar
  7. 7.
    Davis F, Higson SPJ (2007) Biofuel cells–recent advances and applications. Biosens Bioelectron 22:1224–1235CrossRefGoogle Scholar
  8. 8.
    Heinzel A, Barragan VM (1999) A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sour 84:70–74CrossRefGoogle Scholar
  9. 9.
    Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45:2423–2435CrossRefGoogle Scholar
  10. 10.
    Piccolino M (1997) Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology. Trends Neurosci 20:443–448CrossRefGoogle Scholar
  11. 11.
    Wang X, Sjöberg-Eerola P, Eriksson JE, Bobacka J, Bergelin M (2010) The effect of counter ions and substrate material on the growth and morphology of poly (3,4-ethylenedioxythiophene) films: towards the application of enzyme electrode construction in biofuel cells. Synth Met 160:1373–1381CrossRefGoogle Scholar
  12. 12.
    Zhao TS (2009) Micro fuel cells: principles and applications. Academic Press, BurlingtonGoogle Scholar
  13. 13.
    Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919CrossRefGoogle Scholar
  14. 14.
    Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  15. 15.
    Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trend Biotechnol 23:291–298CrossRefGoogle Scholar
  16. 16.
    Atanassov P, Apblett C, Banta S, Brozik S, Barton SC, Cooney M, Liaw BY, Mukerjee S, Minteer SD (2007) Enzymatic biofuel cells. Electrochem Soc Interface 16:28–31Google Scholar
  17. 17.
    Hao YuE, Scott K (2010) Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies 3:23–42CrossRefGoogle Scholar
  18. 18.
    Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337CrossRefGoogle Scholar
  19. 19.
    Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr Opin Biotechnol 18:228–234CrossRefGoogle Scholar
  20. 20.
    Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc B 84:260–276CrossRefGoogle Scholar
  21. 21.
    Zebda A, Renaud L, Cretin M, Innocent C, Ferrigno R, Tingry S (2010) Membraneless microchannel glucose biofuel cell with improved electrical performances. Sens Actuators B: Chem 149:44–50CrossRefGoogle Scholar
  22. 22.
    Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886CrossRefGoogle Scholar
  23. 23.
    Karyakin AA, Morozov SV, Karyakina EE, Varfolomeyev SD, Zorin NA, Cosnier S (2002) Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase. Electrochem Commun 4:417–420CrossRefGoogle Scholar
  24. 24.
    Arechederra RL, Treu BL, Minteer SD (2007) Development of glycerol/O2 biofuel cell. J Power Sour 173:156–161CrossRefGoogle Scholar
  25. 25.
    Yahiro AT, Lee SM, Kimble DO (1964) Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies. Biochimica et Biophysica Acta (BBA): Specialized Sect Biophys Subj 88:375–383Google Scholar
  26. 26.
    Nien PC, Wang JY, Chen PY, Chen LC, Ho KC (2010) Encapsulating benzoquinone and glucose oxidase with a PEDOT film: Application to oxygen-independent glucose sensors and glucose/O2 biofuel cells. Bioresour Technol 101:5480–5486CrossRefGoogle Scholar
  27. 27.
    Courjean O, Gao F, Mano N (2009) Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem Int Ed 48:5897–5899CrossRefGoogle Scholar
  28. 28.
    Gao F, Yan Y, Su L, Wang L, Mao L (2007) An enzymatic glucose/O2 biofuel cell: preparation, characterization and performance in serum. Electrochem Commun 9:989–996CrossRefGoogle Scholar
  29. 29.
    Yan Y, Zheng W, Su L, Mao L (2006) Carbon-nanotube-based glucose/O2 biofuel cells. Adv Mater 18:2639–2643CrossRefGoogle Scholar
  30. 30.
    Atanassov P, Colon F, Rajendran V (2004) Glucose–air enzymatic fuel cell. American Chemical Society, Washington, DC, p 207Google Scholar
  31. 31.
    Cai C, Chen J (2004) Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 332:75–83CrossRefGoogle Scholar
  32. 32.
    Tsujimura S, Kano K, Ikeda T (2002) Glucose/O2 biofuel cell operating at physiological conditions. Denki Kagaku oyobi Kogyo Butsuri Kagaku 70:940–942Google Scholar
  33. 33.
    Pizzariello A, Stred’ansky M, Miertu S (2002) A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix. Bioelectrochemistry 56:99–105CrossRefGoogle Scholar
  34. 34.
    Katz E, Willner I, Kotlyar AB (1999) A non-compartmentalized glucose O2 biofuel cell by bioengineered electrode surfaces. J Electroanal Chem 479:64–68CrossRefGoogle Scholar
  35. 35.
    Willner I, Katz E, Patolsky F, Bückmann AF (1998) Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. J Chem Soc, Perkin Transac 2(1998):1817–1822CrossRefGoogle Scholar
  36. 36.
    Willner I, Heleg-Shabtai V, Blonder R, Katz E, Tao G, Bückmann AF, Heller A (1996) Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J Am Chem Soc 118:10321–10322CrossRefGoogle Scholar
  37. 37.
    Bachas LG, Law SA, Gavalas V, Ball JC, Andrews R (2002) Development of amperometric biosensors by integrating enzymes with carbon nanotube sol-gel composites. Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United StatesGoogle Scholar
  38. 38.
    Gregg BA, Heller A (1990) Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Anal Chem 62:258–263CrossRefGoogle Scholar
  39. 39.
    Ticianelli EA, Derouin CR, Redondo A, Srinivasan S (1988) Methods to advance technology of proton exchange membrane fuel cells. J Electrochem Soc 135:2209CrossRefGoogle Scholar
  40. 40.
    Wang ZH, Wang CY, Chen KS (2001) Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J Power Sour 94:40–50CrossRefGoogle Scholar
  41. 41.
    Topcagic S, Minteer SD (2006) Development of a membraneless ethanol/oxygen biofuel cell. Electrochim Acta 51:2168–2172CrossRefGoogle Scholar
  42. 42.
    Liu C, Alwarappan S, Chen Z, Kong X, Li CZ (2010) Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron 25:1829–1833CrossRefGoogle Scholar
  43. 43.
    Akers NL, Moore CM, Minteer SD (2005) Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. Electrochim Acta 50:2521–2525CrossRefGoogle Scholar
  44. 44.
    Barrière F, Ferry Y, Rochefort D, Leech D (2004) Targeting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell. Electrochem Commun 6:237–241CrossRefGoogle Scholar
  45. 45.
    Chen T, Barton SC, Binyamin G, Gao Z, Zhang Y, Kim HH, Heller A (2001) A miniature biofuel cell. J Am Chem Soc 123:8630–8631CrossRefGoogle Scholar
  46. 46.
    Coman V, Vaz-Domínguez C, Ludwig R, Harreither W, Haltrich D, Lacey ALD, Ruzgas T, Gorton L, Shleev S (2008) A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell. Phys Chem Chem Phys 10:6093–6096CrossRefGoogle Scholar
  47. 47.
    Kim HH, Mano N, Zhang Y, Heller A (2003) A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J Electrochem Soc 150:A209CrossRefGoogle Scholar
  48. 48.
    Yue PL, Lowther K (1986) Enzymatic oxidation of C1 compounds in a biochemical fuel cell. Chem Eng J 33:B69–B77CrossRefGoogle Scholar
  49. 49.
    Abad JM, Vélez M, Santamaría C, Guisán JM, Matheus PR, Vázquez L, Gazaryan I, Gorton L, Gibson T, Fernández VM (2002) Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic acid monolayers. J Am Chem Soc 124:12845–12853CrossRefGoogle Scholar
  50. 50.
    Inamuddin KM, Kim SI, So I, Kim SJ (2008) A conducting polymer/ferritin anode for biofuel cell applications. Electrochim Acta 54:3979–3983CrossRefGoogle Scholar
  51. 51.
    Kim J, Grate JW (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett 3:1219–1222CrossRefGoogle Scholar
  52. 52.
    Scodeller P, Carballo R, Szamocki R, Levin L, Forchiassin F, Calvo EJ (2010) Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide. J Am Chem Soc 132:11132–11140CrossRefGoogle Scholar
  53. 53.
    Raitman OA, Katz E, Bückmann AF, Willner I (2002) Integration of polyaniline/poly (acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J Am Chem Soc 124:6487–6496CrossRefGoogle Scholar
  54. 54.
    Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78:409–418CrossRefGoogle Scholar
  55. 55.
    He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015CrossRefGoogle Scholar
  56. 56.
    Sharma V, Kundu PP (2010) Biocatalysts in microbial fuel cells. Enzym Microb Technol 47(5):179–188CrossRefGoogle Scholar
  57. 57.
    Oh S, Min B, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38:4900–4904CrossRefGoogle Scholar
  58. 58.
    Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232CrossRefGoogle Scholar
  59. 59.
    Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518CrossRefGoogle Scholar
  60. 60.
    Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381CrossRefGoogle Scholar
  61. 61.
    You S, Zhao Q, Zhang J, Liu H, Jiang J, Zhao S (2008) Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells. Biosens Bioelectron 23:1157–1160CrossRefGoogle Scholar
  62. 62.
    Li F, Sharma Y, Lei Y, Li B, Zhou Q (2010) Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation. Appl Biochem Biotechnol 160:168–181CrossRefGoogle Scholar
  63. 63.
    Wook Lee J, Kjeang E (2010) A perspective on microfluidic biofuel cells. Biomicrofluidics 4:041301CrossRefGoogle Scholar
  64. 64.
    Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185:3–27CrossRefGoogle Scholar
  65. 65.
    Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482CrossRefGoogle Scholar
  66. 66.
    Kim J, Jia H, Wang P (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308CrossRefGoogle Scholar
  67. 67.
    Brett CMA, Brett AMO, Brett A (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, OxfordGoogle Scholar
  68. 68.
    Kharkats YI, Sokirko AV, Bark FH (1995) Properties of polarization curves for electrochemical cells described by Butler-Volmer kinetics and arbitrary values of the transfer coefficient. Electrochim Acta 40:247–252CrossRefGoogle Scholar
  69. 69.
    Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334CrossRefGoogle Scholar
  70. 70.
    Crespilho FN, Ghica ME, Zucolotto V, Nart FC, Oliveira ON Jr, Brett C (2007) Electroactive nanostructured membranes (ENM): synthesis and electrochemical properties of redox mediator modified gold nanoparticles using a dendrimer layer by layer approach. Electroanalysis 19:805–812CrossRefGoogle Scholar
  71. 71.
    Qiu JD, Zhou WM, Guo J, Wang R, Liang RP (2009) Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem 385:264–269CrossRefGoogle Scholar
  72. 72.
    Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170CrossRefGoogle Scholar
  73. 73.
    Huczko A (2000) Template-based synthesis of nanomaterials. Appl Phys A Mater Sci Process 70:365–376CrossRefGoogle Scholar
  74. 74.
    Park MS, Kang YM, Wang GX, Dou SX, Liu HK (2008) The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv Funct Mater 18:455–461CrossRefGoogle Scholar
  75. 75.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  76. 76.
    Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787CrossRefGoogle Scholar
  77. 77.
    Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRefGoogle Scholar
  78. 78.
    Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14CrossRefGoogle Scholar
  79. 79.
    Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232–1239CrossRefGoogle Scholar
  80. 80.
    Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube modified electrodes. Angew Chem Int Ed 45:2533–2537CrossRefGoogle Scholar
  81. 81.
    Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge plane sites and tube ends are the reactive sites. Chem Commun 7:829–841CrossRefGoogle Scholar
  82. 82.
    Streeter I, Wildgoose GG, Shao L, Compton RG (2008) Cyclic voltammetry on electrode surfaces covered with porous layers: an analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sens Actuators B: Chem 133:462–466CrossRefGoogle Scholar
  83. 83.
    Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152:187–214CrossRefGoogle Scholar
  84. 84.
    Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125CrossRefGoogle Scholar
  85. 85.
    Zhang WD, Zhao YD, Chen H, Luo QM (2002) Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode. Anal Sci 18:939–941CrossRefGoogle Scholar
  86. 86.
    Gao F, Viry L, Maugey M, Poulin P, Mano N (2010) Engineering hybrid nanotube wires for high-power biofuel cells. Nature Commun 1:1–7Google Scholar
  87. 87.
    Zheng W, Li Q, Su L, Yan Y, Zhang J, Mao L (2006) Direct electrochemistry of multi copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives. Electroanalysis 18:587–594CrossRefGoogle Scholar
  88. 88.
    Guiseppi-Elie A, Lei C, Baughman RH (2002) Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13:559CrossRefGoogle Scholar
  89. 89.
    Xue H, Sun W, He B, Shen Z (2003) Single-wall carbon nanotubes as immobilization material for glucose biosensor. Synth Met 135:831–832CrossRefGoogle Scholar
  90. 90.
    Horiuchi S, Gotou T, Fujiwara M, Asaka T, Yokosawa T, Matsui Y (2004) Single graphene sheet detected in a carbon nanofilm. Appl Phys Lett 84:2403CrossRefGoogle Scholar
  91. 91.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  92. 92.
    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870–873CrossRefGoogle Scholar
  93. 93.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  94. 94.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  95. 95.
    Pumera M, Ambrosi A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954–965CrossRefGoogle Scholar
  96. 96.
    Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905CrossRefGoogle Scholar
  97. 97.
    Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382CrossRefGoogle Scholar
  98. 98.
    Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80:403–406CrossRefGoogle Scholar
  99. 99.
    Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC (2009) Intrinsic response of graphene vapor sensors. Nano Lett 9:1472–1475CrossRefGoogle Scholar
  100. 100.
    Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:301–306CrossRefGoogle Scholar
  101. 101.
    Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346CrossRefGoogle Scholar
  102. 102.
    Colmati F, Yoshioka SA, Silva V, Varela H, Gonzalez ER (2007) Enzymatic based biocathode in a polymer electrolyte membrane fuel cell. Int J Electrochem Sci 2:195–202Google Scholar
  103. 103.
    Ramanavicius A, Kausaite A, Ramanaviciene A (2008) Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosens Bioelectron 24:761–766CrossRefGoogle Scholar
  104. 104.
    Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18:1027–1032CrossRefGoogle Scholar
  105. 105.
    Bunte C, Prucker O, Konig T, Ruhe J (2009) Enzyme containing redox polymer networks for biosensors or biofuel cells: a photochemical approach. Langmuir 26:6019–6027CrossRefGoogle Scholar
  106. 106.
    Taqieddin E, Amiji M (2004) Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials 25:1937–1945CrossRefGoogle Scholar
  107. 107.
    Rege K, Raravikar NR, Kim DY, Schadler LS, Ajayan PM, Dordick JS (2003) Enzyme- polymer- single walled carbon nanotube composites as biocatalytic films. Nano Lett 3:829–832CrossRefGoogle Scholar
  108. 108.
    Wang P, Sheng Dai SD, Tsao AY, Davison BH (2001) Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. Biotechnol Bioeng 74:249–255CrossRefGoogle Scholar
  109. 109.
    de la Garza L, Jeong G, Liddell PA, Sotomura T, Moore TA, Moore AL, Gust D (2003) Enzyme-based photoelectrochemical biofuel cell. J Phys Chem B 107:10252–10260CrossRefGoogle Scholar
  110. 110.
    Daniel DK, Das Mankidy B, Ambarish K, Manogari R (2009) Construction and operation of a microbial fuel cell for electricity generation from wastewater. Int J Hydrogen Energy 34:7555–7560CrossRefGoogle Scholar
  111. 111.
    Alferov SV, Tomashevskaya LG, Ponamoreva ON, Bogdanovskaya VA, Reshetilov AN (2006) Biofuel cell anode based on the Gluconobacter oxydans bacteria cells and 2, 6-dichlorophenolindophenol as an electron transport mediator. Russ J Electrochem 42:403–404CrossRefGoogle Scholar
  112. 112.
    Miyake T, Oike M, Yoshino S, Yatagawa Y, Haneda K, Kaji H, Nishizawa M (2009) Biofuel cell anode: NAD +/glucose dehydrogenase-coimmobilized ketjenblack electrode. Chem Phys Lett 480:123–126CrossRefGoogle Scholar
  113. 113.
    Ivanov I, Vidakovi -Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3:803–846CrossRefGoogle Scholar
  114. 114.
    Bullock C (1995) Immobilised enzymes. Sci Prog 78:119–134Google Scholar
  115. 115.
    Kennedy JF, Melo EHM, Jumel K (1990) Immobilized enzymes and cells. Chem Eng Prog 86:81–89Google Scholar
  116. 116.
    Tischer W, Kasche V (1999) Immobilized enzymes: crystals or carriers? Trend Biotechnol 17:326–335CrossRefGoogle Scholar
  117. 117.
    Tischer W, Wedekind F (2000) Biocatalysis: from discovery to application. Springer-Verlag, Berlin, p 254Google Scholar
  118. 118.
    Okawa Y, Nagano M, Hirota S, Kobayashi H, Ohno T, Watanabe M (1999) Tethered mediator biosensor. Mediated electron transfer between redox enzyme and electrode via ferrocene anchored to electrode surface with long poly (oxyethylene) chain. Biosens Bioelectron 14:229–235CrossRefGoogle Scholar
  119. 119.
    Smolander M, Livio HL, Räsänen L (1992) Mediated amperometric determination of xylose and glucose with an immobilized aldose dehydrogenase electrode. Biosens Bioelectron 7:637–643CrossRefGoogle Scholar
  120. 120.
    Wang J, Mo JW, Li S, Porter J (2001) Comparison of oxygen-rich and mediator-based glucose-oxidase carbon-paste electrodes. Anal Chim Acta 441:183–189CrossRefGoogle Scholar
  121. 121.
    Picioreanu C, Katuri KP, van Loosdrecht MCM, Head IM, Scott K (2010) Modelling microbial fuel cells with suspended cells and added electron transfer mediator. J Appl Electrochem 40:151–162CrossRefGoogle Scholar
  122. 122.
    Hodak J, Etchenique R, Calvo EJ, Singhal K, Bartlett PN (1997) Layer-by-layer self-assembly of glucose oxidase with a poly (allylamine) ferrocene redox mediator. Langmuir 13:2708–2716CrossRefGoogle Scholar
  123. 123.
    Karyakin AA, Gitelmacher OV, Karyakina EE (1995) Prussian blue-based first-generation biosensor. A sensitive amperometric electrode for glucose. Anal Chem 67:2419–2423CrossRefGoogle Scholar
  124. 124.
    Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389–407CrossRefGoogle Scholar
  125. 125.
    Nakano K, Nakamura K, Iwamoto K, Soh N, Imato T (2009) Positive-feedback-mode scanning electrochemical microscopy imaging of redox-active DNA-poly (1, 4-benzoquinone) conjugate film deposited on carbon fiber electrode for micrometer-sized hybridization biosensor applications. J Electroanal Chem 628:113–118CrossRefGoogle Scholar
  126. 126.
    Kealy TJ, Pauson PL (1951) A new type of organo-iron compound. Nature 168:1039–1040CrossRefGoogle Scholar
  127. 127.
    Merchant SA, Tran TO, Meredith MT, Cline TC, Glatzhofer DT, Schmidtke DW (2009) High-sensitivity amperometric biosensors based on ferrocene-modified linear poly (ethylenimine). Langmuir 25:7736–7742CrossRefGoogle Scholar
  128. 128.
    Ishige Y, Takeda S, Kamahori M (2010) Direct detection of enzyme-catalyzed products by FET sensor with ferrocene-modified electrode. Biosens Bioelectron 26(4):1366–1372CrossRefGoogle Scholar
  129. 129.
    Kato R, Sato A, Yoshino D, Hattori T (2011) Electrochemical sensing of anions and heparin by an alkyl-chain ferrocene cationic surfactant. Anal Sci 27:61–66CrossRefGoogle Scholar
  130. 130.
    Kwon SJ, Yang H, Jo K, Kwak J (2008) An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes. Analyst 133:1599–1604CrossRefGoogle Scholar
  131. 131.
    Qiu JD, Liang RP, Wang R, Fan LX, Chen YW, Xia XH (2009) A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosens Bioelectron 25:852–857CrossRefGoogle Scholar
  132. 132.
    De Cuyper M, Joniau M (1992) Binding characteristics and thermal behaviour of cytochrome-C oxidase, inserted into phospholipid-coated, magnetic nanoparticles. Biotechnol Appl Biochem 16:201Google Scholar
  133. 133.
    Mukhopadhyay K, Phadtare S, Vinod VP, Kumar A, Rao M, Chaudhari RV, Sastry M (2003) Gold nanoparticles assembled on amine-functionalized Na-Y zeolite: a biocompatible surface for enzyme immobilization. Langmuir 19:3858–3863CrossRefGoogle Scholar
  134. 134.
    Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67:15–22CrossRefGoogle Scholar
  135. 135.
    Crespilho FN, Ghica ME, Gouveia-Caridade C, Oliveira ON Jr, Brett C (2008) Enzyme immobilisation on electroactive nanostructured membranes (ENM): optimised architectures for biosensing. Talanta 76:922–928CrossRefGoogle Scholar
  136. 136.
    Siqueira JR Jr, Crespilho FN, Zucolotto V, Oliveira ON Jr (2007) Bifunctional electroactive nanostructured membranes. Electrochem Commun 9:2676–2680CrossRefGoogle Scholar
  137. 137.
    Katz E, Filanovsky B, Willner I (1999) A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. New J Chem 23:481–487CrossRefGoogle Scholar
  138. 138.
    Lewis K (1966) Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells. Microbiol Mol Biol Rev 30:101Google Scholar
  139. 139.
    Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292CrossRefGoogle Scholar
  140. 140.
    Ishikawa M, Yamamura S, Takamura Y, Sode K, Tamiya E, Tomiyama M (2006) Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system. Int J Hydrogen Energy 31:1484–1489CrossRefGoogle Scholar
  141. 141.
    Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369CrossRefGoogle Scholar
  142. 142.
    Schröder U, Nießen J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem 115:2986–2989CrossRefGoogle Scholar
  143. 143.
    Fishilevich S, Amir L, Fridman Y, Aharoni A, Alfonta L (2009) Surface display of redox enzymes in microbial fuel cells. J Am Chem Soc 131:12052–12053CrossRefGoogle Scholar
  144. 144.
    Martins MVA, Bonfin C, da Silva WC, Crespilho FN, (2010) Iron (III) nanocomposites for enzyme-less biomimetic cathode: A promising material for use in biofuel cells. Electrochem Commun 12:1509–1512CrossRefGoogle Scholar
  145. 145.
    Sokic-Lazic D, Minteer SD (2008) Citric acid cycle biomimic on a carbon electrode. Biosens Bioelectron 24:939–944CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gabriel M. Olyveira
    • 1
  • Rodrigo M. Iost
    • 2
  • Roberto A. S. Luz
    • 1
  • Frank N. Crespilho
    • 2
  1. 1.Centro de Ciências Naturais e HumanasUniversidade Federal do ABC, CEPSanto AndréBrazil
  2. 2. Institute of Chemistry of São Carlos (IQSC)University of São Paulo (USP)São CarlosBrazil

Personalised recommendations