Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells

  • Jilian N. de Freitas
  • Ana Flávia Nogueira


Organic solar cells are among the most promising devices for cheap solar energy conversion. The classical device consists of a bulk heterojunction of a conjugated polymer/fullerene network. Many research groups have focused on the replacement of the fullerene derivative with other materials, especially inorganic nanoparticles, due to their easily tunable properties, such as size/shape, absorption/emission and charge carrier transport. In this chapter, we highlight recent progress on the incorporation of inorganic semiconductor nanoparticles and metal nanoparticles into organic solar cells. The role of these nanoparticles in the improvement of photocurrent, voltage and efficiency is discussed.


Solar Cell High Occupied Molecular Orbital Atom Transfer Radical Polymerization Lower Unoccupied Molecular Orbital Organic Solar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge FAPESP (fellowship 2009/15428-0) and CNPq for financial support, LME/LNNano/CNPEM for the technical support during the HR-TEM work, Prof. N. Serdar Sariciftci, Prof. Mônica A. Cotta, João H. Clerice and Giovanni Conturbia for scientific discussions, and Prof. Carol Collins for English revision.


  1. 1.
    Fthenakis V, Alsema E (2006) Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004—early 2005 status. Prog Photovolt 14:275–280CrossRefGoogle Scholar
  2. 2.
    Zhao J, Wang A, Altermatt P, Green MA (1995) 24 percent efficient silicon solar-sells with double-layer antireflection coatings and reduced resistance loss. Appl Phys Lett 66:3636–3638CrossRefGoogle Scholar
  3. 3.
    Zhao J, Wang A, Green MA, Ferrazza F (1998) 19.8 % efficient “honeycomb” textured multicrystalline and 24.4 % monocrystalline silicon solar cells. Appl Phys Lett 73:1991–1993CrossRefGoogle Scholar
  4. 4.
    Shockley W, Queisser HQ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519CrossRefGoogle Scholar
  5. 5.
    Knapp K, Jester T (2001) Empirical investigation of the energy payback time for photovoltaic modules. Sol Energy 71:165–172CrossRefGoogle Scholar
  6. 6.
    Goetzberger A, Luther J, Willeke G (2002) Solar cells: past, present, future. Sol Energy Mater Sol Cells 74:1–11CrossRefGoogle Scholar
  7. 7.
    Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %. Adv Mater 22:E135–E138CrossRefGoogle Scholar
  8. 8.
    Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371CrossRefGoogle Scholar
  9. 9.
    Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7:26–31CrossRefGoogle Scholar
  10. 10.
    Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5:683–696CrossRefGoogle Scholar
  11. 11.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  12. 12.
    Manna L, Sher EC, Alivisatos AP (2002) Shape control of colloidal semiconductor nanocrystals. J Clust Sci 13:521–532CrossRefGoogle Scholar
  13. 13.
    Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195–1208CrossRefGoogle Scholar
  14. 14.
    Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391:2469–2495CrossRefGoogle Scholar
  15. 15.
    Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64:297–381CrossRefGoogle Scholar
  16. 16.
    Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804CrossRefGoogle Scholar
  17. 17.
    Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825CrossRefGoogle Scholar
  18. 18.
    Henzie J, Lee J, Lee MH, Hasan W, Odom TW (2009) Nanofabrication of plasmonic structures. Annu Rev Phys Chem 60:147–165CrossRefGoogle Scholar
  19. 19.
    Eustis S, El-Sayed MA (2006) Why gold nanopartilces are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217CrossRefGoogle Scholar
  20. 20.
    Noguez C, Garzon IL (2009) Optically active metal nanoparticles. Chem Soc Rev 38:757–771CrossRefGoogle Scholar
  21. 21.
    Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3:127–150CrossRefGoogle Scholar
  22. 22.
    Arici E, Meissner D, Schaffler F, Sariciftci NS (2003) Core/shell nanomaterials in photovoltaics. Int J Photoenergy 5:199–208CrossRefGoogle Scholar
  23. 23.
    Saunders BR, Turner ML (2008) Nanoparticle-polymer photovoltaic cells. Adv Colloid Interface Sci 138:1–23CrossRefGoogle Scholar
  24. 24.
    Skompska M (2010) Hybrid conjugated polymer/semiconductor photovoltaic cells. Synth Met 160:1–15CrossRefGoogle Scholar
  25. 25.
    Tang CW (1986) 2-layer organic photovoltaic cell. Appl Phys Lett 48:183–185CrossRefGoogle Scholar
  26. 26.
    Meskers SCJ, Huebner M, Oestreich M, Baessler H (2001) Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer: experiment and Monte Carlo simulations. J Phys Chem B 105:9139–9149CrossRefGoogle Scholar
  27. 27.
    Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Polymer-based solar cells. Mater Today 10:28–33CrossRefGoogle Scholar
  28. 28.
    Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  29. 29.
    Miranda PB, Moses D, Heeger AJ (2001) Ultrafast photogeneration of charged polarons in conjugated polymers. Phys Rev B 64:081201-1–081201-4Google Scholar
  30. 30.
    Harrison NT, Hayes GR, Phillips RT, Friend RH (1996) Singlet intrachain exciton generation and decay in poly(p-phenylenevinylene). Phys Rev Lett 77:1881–1884CrossRefGoogle Scholar
  31. 31.
    Yu G, Zhang C, Heeger AJ (1994) Dual function semiconducting polymer devices—light-emitting and photodetecting diodes. Appl Phys Lett 64:1540–1542CrossRefGoogle Scholar
  32. 32.
    Gregg BA (2003) Excitonic solar cells. J Phys Chem B 107:4688–4698CrossRefGoogle Scholar
  33. 33.
    Savenije TJ, Warman JM, Goossens A (1998) Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer. Chem Phys Lett 287:148–153CrossRefGoogle Scholar
  34. 34.
    Nelson J (2002) Organic photovoltaic films. Curr Opin Solid State Mater Sci 6:87–95CrossRefGoogle Scholar
  35. 35.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791CrossRefGoogle Scholar
  36. 36.
    Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500CrossRefGoogle Scholar
  37. 37.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476CrossRefGoogle Scholar
  38. 38.
    Brabec CJ, Zerza G, Cerulo G, De Silvestri S, Luzatti S, Hummelen JC, Sariciftci NS (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340:232–236CrossRefGoogle Scholar
  39. 39.
    Nogueira AF, Montanari I, Nelson J, Durrant JR, Winder C, Sariciftci NS, Brabec CJ (2003) Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy. J Phys Chem B 107:1567–1573CrossRefGoogle Scholar
  40. 40.
    Kim JS, Granström M, Friend RH, Johansson N, Salaneck WR, Daik R, Feast WJ, Cacialli F (1998) Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: the relation between the anode physical, chemical, and morphological properties and the device performance. J Appl Phys 84:6859–6870CrossRefGoogle Scholar
  41. 41.
    Koch N, Kahn A, Ghijsen J, Prieaux JJ, Schwartz S, Johnson RL, Elschner A (2003) Conjugated organic molecules on metal versus polymer electrodes: demonstration of a key energy level alignment mechanism. Appl Phys Lett 82:70–72CrossRefGoogle Scholar
  42. 42.
    Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288–1290CrossRefGoogle Scholar
  43. 43.
    Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15–26CrossRefGoogle Scholar
  44. 44.
    Malliaras GG, Salem JR, Brock PJ, Scott JC (1998) Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes. J Appl Phys 84:1583–1587CrossRefGoogle Scholar
  45. 45.
    Markvart T, Castafier L (2005) Principles of solar cell operation. In: Markvart T, Castafier L (eds) Solar cells: materials, manufacture and operation. Elsevier, AmsterdamGoogle Scholar
  46. 46.
    Meissner D, Ronstalski J (2001) Photovoltaics of interconnected networks. Synth Met 121:1551–1552CrossRefGoogle Scholar
  47. 47.
    Gregg BA, Hanna MC (2003) Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J Appl Phys 93:3605–3614CrossRefGoogle Scholar
  48. 48.
    Hoppe H, Glatzel T, Niggemann M, Schwinger W, Schaeffler F, Hinsch A, Lux-Steiner MC, Sariciftci NS (2006) Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells. Thin Solid Films 511:587–592CrossRefGoogle Scholar
  49. 49.
    Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14:1005–1011CrossRefGoogle Scholar
  50. 50.
    Rispens MT, Meetsma A, Rittberger R, Brabec CJ, Sariciftci NS, Hummelen JC (2003) Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM “plastic” solar cells. Chem Commun 17:2116–2118CrossRefGoogle Scholar
  51. 51.
    Gebeyehu D, Brabec CJ, Padinger F, Fromherz T, Hummelen JC, Badt D, Schindler H, Sariciftci NS (2001) The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes. Synth Met 118:1–9CrossRefGoogle Scholar
  52. 52.
    Yang X, Alexeev A, Michels MAJ, Loos J (2005) Effect of spatial confinement on the morphology evolution of thin poly(p-phenylenevinylene)/methanofullerene composite films. Macromolecules 38:4289–4295CrossRefGoogle Scholar
  53. 53.
    Choulis SA, Nelson J, Kim Y, Poplavskyy D, Kreouzis T, Durrant JR, Bradley D (2003) Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. Appl Phys Lett 83:3812–3814CrossRefGoogle Scholar
  54. 54.
    Snaith HJ, Arias AC, Morteani AC, Silva C, Friend RH (2002) Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nano Lett 2:1353–1357CrossRefGoogle Scholar
  55. 55.
    Brabec CJ, Cravino A, Meissner D, Saricftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11:374–380CrossRefGoogle Scholar
  56. 56.
    Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292CrossRefGoogle Scholar
  57. 57.
    Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Rispens MT, Sanchez L, Hummelen JC, Fromherz T (2002) The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films 403:368–372CrossRefGoogle Scholar
  58. 58.
    Sharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv Mater 18:789–794CrossRefGoogle Scholar
  59. 59.
    Gadisa A, Svensson M, Andersson M, Inganäs O (2004) Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl Phys Lett 84:1609–1611CrossRefGoogle Scholar
  60. 60.
    Yamanari T, Taima T, Sakai J, Saito K (2009) Origin of the open-circuit voltage of organic thin-film solar cells based on conjugated polymers. Sol Energy Mater Sol Cells 93:759–761CrossRefGoogle Scholar
  61. 61.
    Liu J, Shi Y, Yang Y (2001) Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Adv Funct Mater 11:420–424CrossRefGoogle Scholar
  62. 62.
    Mihailetchi VD, Blom PWM, Hummelen JC, Rispens MT (2003) Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells. J Appl Phys 94:6849–6854CrossRefGoogle Scholar
  63. 63.
    Ramsdale CM, Barker JA, Arias AC, MacKenzie JD, Friend RH (2002) The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices. J Appl Phys 92:4266–4270Google Scholar
  64. 64.
    Eo YS, Rhee HW, Chin BD, Yu J-W (2009) Influence of metal cathode for organic photovoltaic device performance. Synth Met 159:1910–1913CrossRefGoogle Scholar
  65. 65.
    Alem S, Gao J, Wantz G (2009) Photovoltaic response of symmetric sandwich polymer cells with identical electrodes. J Appl Phys 106:044505-1–044505-5Google Scholar
  66. 66.
    Frohne H, Shaheen S, Brabec CJ, Müeller D, Sariciftci NS, Meerholz K (2002) Influence of the anodic work function on the performance of organic solar cells. Chem Phys Chem 3:795–799Google Scholar
  67. 67.
    Shaheen SE, Brabec CJ, Saricftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843CrossRefGoogle Scholar
  68. 68.
    Alem S, de Bettignies R, Nunzi J-M, Cariou M (2004) Efficient polymer-based interpenetrated network photovoltaic cells. Appl Phys Lett 84:2178–2180CrossRefGoogle Scholar
  69. 69.
    Schilinsky P, Waldauf C, Brabec CJ (2002) Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl Phys Lett 81:3885–3887CrossRefGoogle Scholar
  70. 70.
    Padinger F, Rittberger R, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85–88CrossRefGoogle Scholar
  71. 71.
    Dennler G, Mozer AJ, Juska G, Pivrikas A, Osterbacka R, Fucnsbauer A, Sariciftci NS (2006) Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulkheterojunction solar cells. Org Electron 7:229–234CrossRefGoogle Scholar
  72. 72.
    Kline RJ, Mcgehee MD, Kadnikova EN, Liu J, Fréchet JM (2003) Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater 15:1519–1522CrossRefGoogle Scholar
  73. 73.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945CrossRefGoogle Scholar
  74. 74.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRefGoogle Scholar
  75. 75.
    Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michaels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579–583CrossRefGoogle Scholar
  76. 76.
    Erb T, Zhokkavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Funct Mater 15:1193–1196CrossRefGoogle Scholar
  77. 77.
    Zhokhavets U, Erb T, Hoppe H, Gobsch G, Sariciftci NS (2006) Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films 496:679–682CrossRefGoogle Scholar
  78. 78.
    Reyes-Reyes M, Kim K, Dewald J, López-Sandoval R, Avadhanula A, Curran S, Carroll DL (2005) Meso-structure formation for enhanced organic photovoltaic cells. Org Lett 7:5749–5752CrossRefGoogle Scholar
  79. 79.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of interpenetrating network morphology. Adv Funct Mater 15:1617–1622CrossRefGoogle Scholar
  80. 80.
    Li G, Shrotriya V, Yao Y, Yang Y (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys 98:043704-1–043704-5Google Scholar
  81. 81.
    Clarke TM, Ballantyne AM, Nelson J, Bradley DDC, Durrant JR (2008) Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Adv Funct Mater 18:4029–4035CrossRefGoogle Scholar
  82. 82.
    Moon JS, Takacs CJ, Cho S, Coffin RC, Kim H, Bazan GC, Heeger AJ (2010) Effect of processing additive on the nanomorphology of a bulk heterojunction material. Nano Lett 10:4005–4008CrossRefGoogle Scholar
  83. 83.
    Privikas A, Stadler P, Neugebauer H, Sariciftci NS (2008) Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives. Org Electron 9:775–782CrossRefGoogle Scholar
  84. 84.
    Peet J, Heeger AJ, Bazan GC (2009) “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res 42:1700–1708CrossRefGoogle Scholar
  85. 85.
    Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2:347–363CrossRefGoogle Scholar
  86. 86.
    Helgesen M, Sondergaard R, Krebs FC (2010) Advanced materials and processes for polymer solar cell devices. J Mater Chem 20:36–60CrossRefGoogle Scholar
  87. 87.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225CrossRefGoogle Scholar
  88. 88.
    Wong WY, Wang XZ, He Z, Djurišić AB, Yip CT, Cheung KY, Wang H, Mak CSK, Chan WK (2007) On the efficiency of polymer solar cells. Nat Mater 6:704–705CrossRefGoogle Scholar
  89. 89.
    Nozik AJ (2010) Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett 10:2735–2741CrossRefGoogle Scholar
  90. 90.
    Nozik AJ (2008) Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 457:3–11CrossRefGoogle Scholar
  91. 91.
    Nozik AJ (2002) Quantum dot solar cells. Physica E 14:115–120CrossRefGoogle Scholar
  92. 92.
    Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890CrossRefGoogle Scholar
  93. 93.
    Rabani E, Baer R (2010) Theory of multiexciton generation in semiconductor nanocrystals. Chem Phys Lett 496:227–235CrossRefGoogle Scholar
  94. 94.
    Beard MC, Midgett AG, Hanna MC, Luther JM, Hughes BK, Nozik AJ (2010) Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett 10:3019–3027CrossRefGoogle Scholar
  95. 95.
    Kang MS, Sahu A, Norris DJ, Frisbie D (2010) Size-dependent electrical transport in CdSe nanocrystal thin films. Nano Lett 10:3727–3732CrossRefGoogle Scholar
  96. 96.
    Arici E, Sariciftci NS, Meissner D (2003) Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv Funct Mater 13:165–171CrossRefGoogle Scholar
  97. 97.
    Arici E, Hoppe H, Schaffler F, Meissner D, Malik MA, Sariciftci NS (2004) Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. Appl Phys A Mater Sci Process 79:59–64CrossRefGoogle Scholar
  98. 98.
    Arici E, Hoppe H, Schaffler F, Meissner D, Malik MA, Sariciftci NS (2004) Hybrid solar cells based on inorganic nanoclusters and conjugated polymers. Thin Solid Films 451:612–618CrossRefGoogle Scholar
  99. 99.
    Günes S, Fritz KP, Neugebauer H, Sariciftci NS, Kumar S, Scholes GD (2007) Hybrid solar cells using PbS nanoparticles. Sol Energy Mater Sol Cells 91:420–423CrossRefGoogle Scholar
  100. 100.
    Watt AAR, Blake D, Warner J, Thomsen EA, Tavenner EL, Rubinsztein-Dunlop H, Meredith P (2005) Lead sulfide nanocrystal: conducting polymer solar cells. J Phys D Appl Phys 38:2006–2012CrossRefGoogle Scholar
  101. 101.
    Cui DH, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M (2006) Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Appl Phys Lett 88:183111-1–183111-3Google Scholar
  102. 102.
    Noone KM, Strein E, Anderson NC, Wu P-T, Jenekhe SA, Ginger DS (2010) Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots. Nano Lett 10:2635–2639CrossRefGoogle Scholar
  103. 103.
    Du Pasquier A, Mastrogiovanni DDT, Klein LA, Wang T, Garfunkel E (2007) Photoinduced charge transfer between poly(3-hexylthiophene) and germanium nanowires. Appl Phys Lett 91:183501-1–183501-3Google Scholar
  104. 104.
    Novotny CJ, Yu ET, Yu PKL (2008) InP nanowire/polymer hybrid photodiode. Nano Lett 8:775–779CrossRefGoogle Scholar
  105. 105.
    Liu C-Y, Holman ZC, Kortshagen UR (2009) Hybrid solar cells from P3HT and silicon nanocrystals. Nano Lett 9:449–452CrossRefGoogle Scholar
  106. 106.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427CrossRefGoogle Scholar
  107. 107.
    Huynh WU, Dittmer JJ, Libby WC, Whiting GL, Alivisatos AP (2003) Controlling the morphology of nanocrystal-polymer composites for solar cells. Adv Funct Mater 13:73–79CrossRefGoogle Scholar
  108. 108.
    Sun BQ, Greenham NC (2006) Improved effciency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. Phys Chem Chem Phys 8:3557–3560Google Scholar
  109. 109.
    Zhou Y, Li YC, Zhong HZ, Hou JH, Ding YQ, Yang CH, Li YF (2006) Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1−x nanocrystals. Nanotechnology 17:4041–4047CrossRefGoogle Scholar
  110. 110.
    Sun BQ, Marx E, Greenham NC (2003) Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett 3:961–963CrossRefGoogle Scholar
  111. 111.
    Gur I, Fromer NA, Chen C-P, Kanaras AG, Alivisatos AP (2007) Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett 7:409–414CrossRefGoogle Scholar
  112. 112.
    Sun BQ, Snaith HJ, Dhoot AS, Westenhoff S, Greenham NC (2005) Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J Appl Phys 97:014914-1–014914-6Google Scholar
  113. 113.
    Dayal S, Kopidakis N, Olson DC, Ginley DS, Rumbles G (2010) Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett 10:239–242CrossRefGoogle Scholar
  114. 114.
    Choi S-H, Song HJ, Park IK, Yum J-H, Kim S-S, Lee SH, Sung Y-E (2006) Synthesis of size-controlled CdSe quantum dots and characterization of CdSe-conjugated polymer blends for hybrid solar cells. J Photochem Photobiol A 179:135–141CrossRefGoogle Scholar
  115. 115.
    Tang A-W, Teng F, Jui H, Gao Y-H, Hou Y-B, Liang C-J, Wang Y-S (2007) Investigation on photoconductive properties of MEH-PPV/CdSe-nanocrystal nanocomposites. Mater Lett 61:2178–2181CrossRefGoogle Scholar
  116. 116.
    Han LL, Qin DH, Jiang X, Liu YS, Wang L, Chen JW, Cao Y (2006) Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology 17:4736–4742CrossRefGoogle Scholar
  117. 117.
    Zhou YF, Riehle FS, Yuan Y, Schleiermacher H-F, Niggemann M, Urban GA, Krüger M (2010) Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene). Appl Phys Lett 96:013304-1–013304-3Google Scholar
  118. 118.
    Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett 10:1253–1258CrossRefGoogle Scholar
  119. 119.
    Xi DJ, Zhang H, Furst S, Chen B, Pei Q (2008) Electrochemical synthesis and photovoltaic property of cadmium sulfide-polybithiophene interdigitated nanohybrid thin films. J Phys Chem C 112:19765–19769CrossRefGoogle Scholar
  120. 120.
    Aldakov D, Jiu T, Zagorska M, de Bettignies R, Jouneau P-H, Pron A, Chandezon F (2010) Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers. Phys Chem Chem Phys 12:7497–7505CrossRefGoogle Scholar
  121. 121.
    de Freitas JN, Pivrikas A, Nowacki BF, Akcelrud LC, Sariciftci NS, Nogueira AF (2010) Investigation of new PPV-type polymeric materials containing fluorene and thiophene units and their application in organic solar cells. Synth Met 160:1654–1661CrossRefGoogle Scholar
  122. 122.
    de Freitas JN, Grova IR, Akcelrud LC, Arici E, Sariciftci NS, Nogueira AF (2010) The effects of CdSe incorporation into bulk heterojunction solar cells. J Mater Chem 20:4845–4853CrossRefGoogle Scholar
  123. 123.
    Huynh WU, Dittmer JJ, Teclemariam N, Milliron DJ, Alivisatos AP, Barnham KWJ (2003) Charge transport in hybrid nanorod-polymer composite photovoltaic cells. Phys Rev B 67:115326-1–115326-12Google Scholar
  124. 124.
    Greenham NC, Peng XG, Alivisatos AP (1996) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54:17628–17637CrossRefGoogle Scholar
  125. 125.
    Ginger DS, Greenham NC (2000) Charge injection and transport in films of CdSe nanocrystals. J Appl Phys 87:1361–1368CrossRefGoogle Scholar
  126. 126.
    Lin Y-Y, Chen C-W, Chang J, Lin TY, Liu IS, Su W-F (2006) Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials. Nanotechnology 17:1260–1263CrossRefGoogle Scholar
  127. 127.
    Wang P, Abrusci A, Wong HMP, Svensson M, Andersson MR, Greenham NC (2006) Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. Nano Lett 6:1789–1793CrossRefGoogle Scholar
  128. 128.
    Ginger DS, Greenham NC (1999) Charge separation in conjugated-polymer/nanocrystal blends. Synth Met 101:425–428CrossRefGoogle Scholar
  129. 129.
    Ginger DS, Greenham NC (1999) Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals. Phys Rev B 59:10622–10629CrossRefGoogle Scholar
  130. 130.
    Kucur E, Riegler J, Urban G, Nann T (2004) Charge transfer efficiency in hybrid bulk heterojunction composites. J Chem Phys 121:1074–1079CrossRefGoogle Scholar
  131. 131.
    Liu JS, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J Am Chem Soc 126:6550–6551CrossRefGoogle Scholar
  132. 132.
    Baker DR, Kamat PV (2010) Tuning the emission of CdSe quantum dots by controlled trap enhancement. Langmuir 13:11272–11276CrossRefGoogle Scholar
  133. 133.
    Talforn E, Moysidou E, Abellon RD, Savenije TJ, Goossens A, Houtepen AJ, Siebbeles LDA (2010) Highly photoconductive CdSe quantum-dot films: influence of capping molecules and film preparation procedure. J Phys Chem C 114:3441–3447CrossRefGoogle Scholar
  134. 134.
    Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine. J Phys Chem C 114:12784–12791CrossRefGoogle Scholar
  135. 135.
    Querner C, Reiss P, Bleuse J, Pron A (2004) Chelating ligands for nanocrystals’ surface functionalization. J Am Chem Soc 126:11574–11582CrossRefGoogle Scholar
  136. 136.
    Milliron DJ, Gur L, Alivisatos AP (2005) Hybrid organic: nanocrystal solar cells. MRS Bull 30:41–44CrossRefGoogle Scholar
  137. 137.
    Advincula RC (2006) Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles. Dalton Trans 23:2778–2784CrossRefGoogle Scholar
  138. 138.
    Sih BC, Wolf M (2007) CdSe nanorods functionalized with thiol-anchored oligothiophenes. J Phys Chem C 111:17184–17192CrossRefGoogle Scholar
  139. 139.
    Aldakov D, Querner C, Kervella Y, Jousselme B, Demadrille R, Rossitto E, Reiss P, Pron A (2008) Oligothiophene-functionalized CdSe nanocrystals: preparation and electrochemical properties. Microchim Acta 160:335–344CrossRefGoogle Scholar
  140. 140.
    Skaff H, Sill K, Emrick T (2004) Quantum dots tailored with poly(para-phenylene vinylene). J Am Chem Soc 126:11322–11352CrossRefGoogle Scholar
  141. 141.
    Odoi MY, Hammer NI, Sill K, Emrick T, Barnes MD (2006) Observation of enhanced energy transfer in individual quantum dot-oligophenylene vinylene nanostructures. J Am Chem Soc 128:3506–3507Google Scholar
  142. 142.
    Pokrop R, Pamula K, Deja-Drogomirecka S, Zagorska M, Reiss P, Louarn G, Chandezon F, Pron A (2010) Molecular hybrids of CdSe semiconductor nanocrystals with terthiophene carboxylic acid or its polymeric analogue. Mater Chem Phys 123:756–760CrossRefGoogle Scholar
  143. 143.
    Shallcross RC, D’Ambruoso GD, Pyun J, Armstrong NR (2010) Photoelectrochemical processes in polymer-tethered CdSe nanocrystals. J Am Chem Soc 132:2622–2632CrossRefGoogle Scholar
  144. 144.
    Zhang QL, Russel TP, Emrick T (2007) Synthesis and characterization of CdSe nanorods functionalized with regioregular poly(3-hexylthiophene). Chem Mater 19:3712–3716CrossRefGoogle Scholar
  145. 145.
    Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries-EL M, Petrich JW, Lin Z (2007) Organic-inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots. J Am Chem Soc 129:12828–12833CrossRefGoogle Scholar
  146. 146.
    Wang T-L, Yang C-H, Shieh Y-T, Yeh A-C, Juan L-W, Zeng HC (2010) Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk jeterojunction solar cells. Eur Polym J 46:634–642CrossRefGoogle Scholar
  147. 147.
    Kovalenko MV, Bodnarchuk MI, Zaumseil J, Lee J-S, Talapin DV (2010) Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. J Am Chem Soc 132:10085–10092CrossRefGoogle Scholar
  148. 148.
    Robel J, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129:4136–4137CrossRefGoogle Scholar
  149. 149.
    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130:4007–4015CrossRefGoogle Scholar
  150. 150.
    Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753Google Scholar
  151. 151.
    Baker DR, Kamat PV (2009) Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805–811CrossRefGoogle Scholar
  152. 152.
    Bang JH, Kamat PV (2010) Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv Funct Mater 20:1970–1976CrossRefGoogle Scholar
  153. 153.
    Sambur JB, Riha SC, Choi D, Parkinson BA (2010) Influence of surface chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO2 surfaces. Langmuir 26:4839–4847CrossRefGoogle Scholar
  154. 154.
    Shin K, il Seok S, Im SH, Park JH (2010) CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. Chem Commun 46:2385–2387Google Scholar
  155. 155.
    Mora-Seró I, Likodimos V, Gimenez S, Martínez-Ferrero E, Albero J, Palomares E, Kontos AG, Falaras P, Bisquert J (2010) Fast regeneration of CdSe quantum dots by Ru dye in sensitized TiO2 electrodes. J Phys Chem C 114:6755–6761CrossRefGoogle Scholar
  156. 156.
    Shalom M, Albero J, Tachan Z, Martinez-Ferrero E, Zaban A, Palomares E (2010) Quantum dot-bilayer-sensitized solar cells: breakng the limits imposed by the low absorbance of dye monolayers. J Phys Chem Lett 1:1134–1138CrossRefGoogle Scholar
  157. 157.
    Luo L, Lv G, Li B, Hu X, Jin L, Wang J, Tang Y (2010) Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application. Thin Solid Films 518:5146–5152CrossRefGoogle Scholar
  158. 158.
    Timp BA, Zhu X-Y (2010) Electronic energy alignment at the PbSe quantum dots/ZnO (1010) interface. Surf Sci 604:1335–1341CrossRefGoogle Scholar
  159. 159.
    Huang J, Huang Z, Yang Y, Zhu H, Lian T (2010) Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J Am Chem Soc 132:4858–4864CrossRefGoogle Scholar
  160. 160.
    Guchhait A, Rath AK, Pal AJ (2009) Hybrid core-shell nanoparticles: photoinduced electron-transfer for charge separation and solar cell applications. Chem Mater 21:5292–5299CrossRefGoogle Scholar
  161. 161.
    Narayanan SS, Sinhá SS, Verma PK, Pal SK (2008) Ultrafast energy transfer from 3-mercaptopropionic acid capped CdSe/ZnS QDs to dye-labelled DNA. Chem Phys Lett 463:160–165CrossRefGoogle Scholar
  162. 162.
    Li T-L, Teng H (2010) Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes. J Mater Chem 20:3656–3664CrossRefGoogle Scholar
  163. 163.
    Tubtimtae A, Wu K-L, Tung H-Y, Lee M-W, Wang GJ (2010) Ag2S quantum dot-sensitized solar cells. Electrochem Commun 12:1158–1160CrossRefGoogle Scholar
  164. 164.
    Chang JA, Rhee JH, Im SH, Lee YH, Kim H, Seok SI, Nazeeruddin MK, Grätzel M (2010) High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Lett 10:2609–2612Google Scholar
  165. 165.
    Gao X-F, Sun W-T, Ai G, Peng L-M (2004) Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots. Appl Phys Lett 96:153104-1–153104-3Google Scholar
  166. 166.
    Huang S, Zhang Q, Huang X, Guo X, Deng M, Li D, Luo Y, Shen Q, Toyoda T, Meng Q (2010) Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays. Nanotechnology 21:375201-1–375201-7Google Scholar
  167. 167.
    Talgorn E, Abellon RD, Kooyman PJ, Piris J, Savenije TJ, Goossens A, Houtepen AJ, Siebbeles LDA (2010) Supercrystals of CdSe quantum dots with high charge mobility and efficient electron transfer to TiO2. ACS Nano 4:1723–1731CrossRefGoogle Scholar
  168. 168.
    Kniprath R, Rabe JP, McLeskey JT Jr, Wang D, Kirstein S (2009) Hybrid photovoltaic cells with II-VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components. Thin Solid Films 518:295–298CrossRefGoogle Scholar
  169. 169.
    Hamada M, Nakanishi S, Itoh T, Ishikawa M, Biju V (2010) Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles. ACS Nano 4:4445–4454CrossRefGoogle Scholar
  170. 170.
    Liu Z, Miyauchi M, Uemura Y, Cui Y, Hara K, Zhao Z, Sunahara K, Furube A (2010) Enhancing the performance of quantum dots sensitized solar cell by SiO2 surface coating. Appl Phys Lett 96:233107-1–233107-3Google Scholar
  171. 171.
    Deepa M, Gakhar R, Joshi AG, Singh BP, Srivastava AK (2010) Enhanced photoelectrochemistry and interactions in cadmium selenide-functionalized multiwalled carbon nanotube composite films. Electrochim Acta 55:6731–6742CrossRefGoogle Scholar
  172. 172.
    Zhang L, Jia Y, Wang S, Li Z, Ji C, Wei J, Zhu H, Wang K, Wu D, Shi W, Fang Y, Cao A (2010) Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett 10:3583–3589CrossRefGoogle Scholar
  173. 173.
    Schulz-Drost C, Sgobba V, Gerhardsm C, Leubner S, Calderon RMK, Ruland A, Guldi DM (2010) Innovative inorganic-organic nanohybrid materials: coupling quantum dots to carbon nanotubes. Angew Chem Int Ed 49:6425–6429CrossRefGoogle Scholar
  174. 174.
    Chen Z, Berciaud S, Nukolls C, Heinz TF, Brus LE (2010) Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 4:2964–2968CrossRefGoogle Scholar
  175. 175.
    Biebersdorf A, Dietmuller R, Susha AS, Rogach AL, Poznyak SK, Talapin DV, Weller H, Klar TA, Feldmann J (2006) Semiconductor nanocrystals photosensitize C-60 crystals. Nano Lett 6:1559–1563CrossRefGoogle Scholar
  176. 176.
    Chen H-Y, Lo MKF, Yang G, Monbouquette HG, Yang Y (2008) Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat Nanotechnol 3:543–547CrossRefGoogle Scholar
  177. 177.
    de Freitas JN, Nogueira AF (2010) Hybrid nanostructured solar cells based on the incorporation of inorganic nanoparticles in polymer-fullerene mixtures. In: Tsakalakos L (ed) Proceedings of SPIE, vol 7772. The International Society for Optical Engineering, San Diego, p 77721K. doi: 10.1117/12.862510
  178. 178.
    Xue B, Vaughan B, Poh C-H, Burke KB, Thomsen L, Stapleton A, Zhou X, Bryant GW, Belcher W, Dastoor PC (2010) Vertical stratification and interfacial structure in P3HT:PCBM organic solar cells. J Phys Chem C 114:15797–15805Google Scholar
  179. 179.
    Huang Y-C, Liao Y-C, Li S-S, Wu M-C, Chen C-W, Su W-F (2009) Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy. Sol Energy Mater Sol Cells 93:888–892CrossRefGoogle Scholar
  180. 180.
    Dante M, Peet J, Nguyen T-Q (2008) Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy. J Phys Chem C 112:7241–7249CrossRefGoogle Scholar
  181. 181.
    Zhao Y, Xie Z, Qu Y, Geng Y, Wang L (2007) Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk heterojunction photovoltaic cells. Appl Phys Lett 90:043504-1–043504-3Google Scholar
  182. 182.
    Watts B, Belcher WJ, Thomsen L, Ade H, Dastoor PC (2009) A quantitative study of PCBM diffusion during annealing of P3HT:PCBM blend films. Macromolecules 42:8392–8397CrossRefGoogle Scholar
  183. 183.
    Alves JPD, de Freitas JN, Almeida LCP, Atvars TDZ, Nogueira AF (2011) Photophysical and photovoltaic properties of a polymer-fullerene system with CdSe nanoparticles (Submitted for publication)Google Scholar
  184. 184.
  185. 185.
    Henglein A (1993) Physical properties of small metal particles in solution—microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471CrossRefGoogle Scholar
  186. 186.
    Kreibig U, Vollmer M (1996) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  187. 187.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  188. 188.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRefGoogle Scholar
  189. 189.
    Underwood S, Mulvaney P (1994) Effect of the solution refractive-index on the color of gold colloids. Langmuir 10:3427–3430CrossRefGoogle Scholar
  190. 190.
    Ung T, Liz-Marzan LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441–3452CrossRefGoogle Scholar
  191. 191.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  192. 192.
    Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712CrossRefGoogle Scholar
  193. 193.
    Kreibig U, Genzel L (1985) Optical-absorption of small metallic particles. Surf Sci 156:678–700CrossRefGoogle Scholar
  194. 194.
    Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106-1–063106-3Google Scholar
  195. 195.
    Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21739–21800CrossRefGoogle Scholar
  196. 196.
    Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21:235201-1–235201-6Google Scholar
  197. 197.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105-1–093105-8Google Scholar
  198. 198.
    Hägglund C, Zäch M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110-1–053110-3Google Scholar
  199. 199.
    Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205CrossRefGoogle Scholar
  200. 200.
    Temple TL, Mehanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mater Sol Cells 93:1978–1985CrossRefGoogle Scholar
  201. 201.
    Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113CrossRefGoogle Scholar
  202. 202.
    Ferry VE, Verschuuren MA, Li HBT, Verhagen E, Walters RJ, Schropp REI, Atwater HA, Polman A (2010) Light trapping in ultrathin plasmonic solar cells. Opt Express 18:A237–A245Google Scholar
  203. 203.
    Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504–3509CrossRefGoogle Scholar
  204. 204.
    Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113-1–191113-3Google Scholar
  205. 205.
    Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904-1–121904-3Google Scholar
  206. 206.
    Pryce IM, Koleske DD, Fischer AJ, Atwater HA (2010) Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl Phys Lett 96:153501-1–153501-3Google Scholar
  207. 207.
    Hägglund C, Zach M, Kasemo B (2008) Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl Phys Lett 92:013113-1–013113-3Google Scholar
  208. 208.
    Standridge SD, Schatz GC, Hupp JT (2009) Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131:8407–8409CrossRefGoogle Scholar
  209. 209.
    Du L, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M (2009) Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J Phys Chem C 113:6454–6462CrossRefGoogle Scholar
  210. 210.
    Sudeep PK, Takechi K, Kamat PV (2007) Harvesting photons in the infrared. Electron injection from excited tricarbocyanine dye (IR-125) into TiO2 and Ag@TiO2 core-shell nanoparticles. J Phys Chem C 111:488–494CrossRefGoogle Scholar
  211. 211.
    Kathiravan A, Kumar PS, Renganathan R, Anandan S (2009) Photoinduced electron transfer reactions between meso-tetrakis(4-sulfonatophenyl)porphyrin and colloidal metal-semiconductor nanoparticles. Colloids Surf A 333:175–181CrossRefGoogle Scholar
  212. 212.
    Grätzel M (2003) Solar cells to dye for. Nature 421:586–587CrossRefGoogle Scholar
  213. 213.
    McFarland EW, Tang J (2003) A photovoltaic device structure based on internal electron emission. Nature 421:616–618CrossRefGoogle Scholar
  214. 214.
    Hussain AM, Neppolian B, Kim SH, Kim JY, Choi H-C, Lee K, Park S-J, Heeger AJ (2009) Improved performance of polymer light-emitting diodes with nanocomposites. Appl Phys Lett 94:073306-1–073306-3Google Scholar
  215. 215.
    Dhas V, Muduli S, Lee W, Han S-H, Ogale S (2008) Enhanced conversion efficiency in dye-sensitized solar cells based on ZnO bifunctional nanoflowers loaded with gold nanoparticles. Appl Phys Lett 93:243108-1–243108-3Google Scholar
  216. 216.
    Chen ZH, Tang YB, Liu CP, Leung YH, Yun GD, Chen LM, Wang YQ, Bello I, Zapien JA, Zhang WJ, Lee CS, Lee ST (2009) Vertically aligned ZnO nanorod arrays sensitized with gold nanoparticles for Schottky barrier photovoltaic cells. J Phys Chem C 113:13433–13437CrossRefGoogle Scholar
  217. 217.
    Peh CKN, Ke L, Ho GW (2010) Modification of ZnO nanorods through Au nanoparticles surface coating for dye-sensitized solar cells applications. Mater Lett 64:1372–1375CrossRefGoogle Scholar
  218. 218.
    Jakob M, Levanon H, Kamat PV (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett 3:353–358CrossRefGoogle Scholar
  219. 219.
    Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129:14852–14853CrossRefGoogle Scholar
  220. 220.
    Guduru S, Singh VP, Rajaputra S, Mishra S, Mangu R, St Omer I (2010) Characteristics of gold/cadmium sulfide nanowire Schottky diodes. Thin Solid Films 518:1809–1814CrossRefGoogle Scholar
  221. 221.
    Haberer ED, Joo JH, Hodelin JF, Hu EL (2009) Enhanced photogenerated carrier collection in hybrid films of bio-templated gold nanowires and nanocrystalline CdSe. Nanotechnology 29:415206-1–415206-7Google Scholar
  222. 222.
    Yang T-T, Chen W-T, Hsu Y-J, Wei KH, Lin TY, Lin TW (2010) Interfacial charge carrier dynamics in core-shell Au-CdS nanocrystals. J Phys Chem C 114:11414–11420CrossRefGoogle Scholar
  223. 223.
    Arakawa T, Munaoka T, Akiyama T, Yamada S (2009) Effects of silver nanoparticles on photoelectrochemical responses of organic dyes. J Phys Chem C 113:11830–11835CrossRefGoogle Scholar
  224. 224.
    Nicholson PG, Ruiz V, Macpherson JV, Unwin PR (2005) Enhanced visible photoluminescence in ultrathin poly(3-hexylthiophene) films by incorporation of Au nanoparticles. Chem Commun 12:1052–1054CrossRefGoogle Scholar
  225. 225.
    Park JH, Lim YT, Park OO, Kim JK, Yu J-W, Kim YC (2004) Polymer/gold nanoparticle nanocomposite light-emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers. Chem Mater 16:688–692CrossRefGoogle Scholar
  226. 226.
    Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem B 107:8829–8833CrossRefGoogle Scholar
  227. 227.
    Saranthy KV, Narayan KS, Kim J, White JO (2000) Novel fluorescence and morphological structures in gold nanoparticle-polyoctylthiophene based thin films. Chem Phys Lett 318:543–548CrossRefGoogle Scholar
  228. 228.
    Chen XC, Green PF (2010) Control of morphology and its effects on the optical properties of polymer nanocomposites. Langmuir 26:3659–3665CrossRefGoogle Scholar
  229. 229.
    Li F, Zhou Y, Zhang F, Liu X, Zhan Y, Fahlman M (2009) Tuning work function of noble metals as promising cathodes in organic electronic devices. Chem Mater 21:2798–2802CrossRefGoogle Scholar
  230. 230.
    Nakamura M, Yang C, Tajima K, Hashimoto K (2009) High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination. Sol Energy Mater Sol Cells 93:1681–1684CrossRefGoogle Scholar
  231. 231.
    Chen X, Zhao C, Rothberg L, Ng MK (2008) Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification. Appl Phys Lett 93:123302-1–123302-3Google Scholar
  232. 232.
    Tjeng LH, Hesper R, Heessels ACL, Heers A, Jonkman HT, Sawatzky GA (1997) Development of the electronic structure in a K-doped C-60 monolayer on a Ag(111) surface. Solid State Commun 103:31–35CrossRefGoogle Scholar
  233. 233.
    Hunt MRC, Modesti S, Rudolf P, Palmer RE (1995) Charge-transfer and structure in C60 adsorption on metal-sufaces. Phys Rev B 51:10039–10047CrossRefGoogle Scholar
  234. 234.
    Chase SJ, Bacsa WS, Mitch MG, Pilione LJ, Lannin JS (1992) Surface-enhanced Raman-scattering and photoemission of C60 on noble-metal surfaces. Phys Rev B 46:7873–7877CrossRefGoogle Scholar
  235. 235.
    Morioka R, Yasui K, Ozawa M, Odoi K, Ichikawa H, Fujita K (2010) Anode buffer layer containing Au nanoparticles for high stability organic solar cells. J Photopolym Sci Technol 23:313–316Google Scholar
  236. 236.
    Chen F-C, Wu J-L, Lee C-L, Hong Y, Kuo C-H, Huang MH (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl Phys Lett 95:013305-1–013305-3Google Scholar
  237. 237.
    Lee JH, Park JH, Kim JS, Lee DY, Cho K (2009) High efficiency polymer solar cells with wet deposited plasmonic gold nanodots. Org Electron 10:413–420Google Scholar
  238. 238.
    Kim S-S, Na S-I, Jo J, Kim D-Y, Nah Y-C (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93:073307-1–073307-3Google Scholar
  239. 239.
    Morfa AJ, Rowlen KL, Reilly TH III, Romero MJ, van de Lagemaat J (2008) Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl Phys Lett 92:013504-1–013504-3Google Scholar
  240. 240.
    Tvingstedt K, Persson N-K, Inganas O, Rahachou A, Zozoulenko IV (2007) Surface plasmon increase absorption in polymer photovoltaic cells. Appl Phys Lett 91:113514CrossRefGoogle Scholar
  241. 241.
    Stenzel O, Stendal A, Voigtsberger K, von Borczykowski C (1995) Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin-film devices by incorporation of metal-clusters. Sol Energy Mater Sol Cells 37:337–348CrossRefGoogle Scholar
  242. 242.
    Mapel JK, Singh M, Baldo MA, Celebi K (2007) Plasmonic excitation of organic double heterostructure solar cells. Appl Phys Lett 90:121102-1–121102-3Google Scholar
  243. 243.
    Lindquist NC, Luhman WA, Oh S-W, Holmes RJ (2008) Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl Phys Lett 93:123308-1–123308-3Google Scholar
  244. 244.
    Westphalen M, Kreibig U, Rostalski J, Luth H, Meissner D (2000) Metal cluster enhanced organic solar cells. Sol Energy Mater Sol Cells 61:97–105CrossRefGoogle Scholar
  245. 245.
    Yakimov A, Forrest SR (2002) High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoculsters. Appl Phys Lett 80:1667–1669CrossRefGoogle Scholar
  246. 246.
    Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526CrossRefGoogle Scholar
  247. 247.
    Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87:203113-1–203113-3Google Scholar
  248. 248.
    Park M, Chin BD, Yu J-W, Chun M-S, Han S-H (2008) Enhanced photocurrent and efficiency of poly(3-hexylthiophene)/fullerene photovoltaic devices by the incorporation of gold nanoparticles. J Ind Eng Chem 14:382–386CrossRefGoogle Scholar
  249. 249.
    Shen H, Bienstman P, Maes B (2009) Plasmonic absorption enhancement in organic solar cells with thin active layers. J Appl Phys 106:073109-1–073109-5Google Scholar
  250. 250.
    Duche D, Torchio P, Escoubas L, Monestier F, Simon J-J, Flory F, Mathian G (2009) Improving light absorption in organic solar cells by plasmonic contribution. Sol Energy Mater Sol Cells 93:1377–1382CrossRefGoogle Scholar
  251. 251.
    Topp K, Borchert H, Johnen F, Tunc AV, Knipper M, von Hauff E, Parisi J, Al-Shamery K (2010) Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells. J Phys Chem A 114:3981–3989CrossRefGoogle Scholar
  252. 252.
    Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ (2011) Enhancement of donor–acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of au nanoparticles. Angew Chem Int Ed 50:1–6CrossRefGoogle Scholar
  253. 253.
    Conturbia GLC (2009) Células solares baseadas em nanotubos de carbono modificado e nanopartículas de ouro. Dissertation, Universidade Estadual de CampinasGoogle Scholar
  254. 254.
    Reyes-Reyes M, López-Sandoval R, Arenas-Alatorre J, Garibay-Alonso R, Carroll DL, Lastras-Martinez A (2007) Methanofullerene elongated nanostructure formation for enhanced organic solar cells. Thin Solid Films 516:52–57CrossRefGoogle Scholar
  255. 255.
    Yang X, van Duren JKK, Rispens MT, Hummelen JC, Hanssen RAJ, Michels MAJ, Loos J (2004) Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mater 16:802–806CrossRefGoogle Scholar
  256. 256.
    Hugger S, Thomann R, Heinzel T, Thurn-Albrecht T (2004) Semicrystalline morphology in thin films of poly(3-hexylthiophene). Colloid Polym Sci 282:932–938CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory of Nanotechnology and Solar Energy, Chemistry InstituteUniversity of Campinas (UNICAMP)Campinas-SPBrazil

Personalised recommendations