The Extended Composer

Creative Reflection and Extension with Generative Tools
  • Daniel Jones
  • Andrew R. Brown
  • Mark d’Inverno


This chapter focuses on interactive tools for musical composition which, through computational means, have some degree of autonomy in the creative process. This can engender two distinct benefits: extending our practice through new capabilities or trajectories, and reflecting our existing behaviour, thereby disrupting habits or tropes that are acquired over time. We examine these human-computer partnerships from a number of perspectives, providing a series of taxonomies based on a systems behavioural properties, and discuss the benefits and risks that such creative interactions can provoke.


Computational System Musical Composition Creative Behaviour Algorithmic Composition Generative Music 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ames, C. (1987). Automated composition in retrospect: 1956–1986. Leonardo, 20(2), 169–185. MathSciNetCrossRefGoogle Scholar
  2. André, P., Schraefel, M. C., Teevan, J., & Dumais, S. T. (2009). Discovery is never by chance: designing for (un)serendipity. In C&C’09: proceedings of the seventh ACM conference on creativity and cognition (pp. 305–314). New York: ACM. CrossRefGoogle Scholar
  3. Beilhartz, K., & Ferguson, S. (2007). Gestural hyper instrument collaboration with generative computation for real time creativity. In Creativity and cognition (pp. 213–222). Washington: ACM. Google Scholar
  4. Berry, R., & Dahlstedt, P. (2003). Artificial life: why should musicians bother? Contemporary Music Review, 22(3), 57–67. CrossRefGoogle Scholar
  5. Biles, J. (1994). GenJam: A genetic algorithm for generating jazz solos. In Proceedings of the international computer music conference (pp. 131–137). Google Scholar
  6. Boden, M. A. (2004). The creative mind: myths and mechanisms. New York: Routledge. Google Scholar
  7. Bown, O. (2009). Against individual creativity. In Dagstuhl seminar proceedings 09291. Computational creativity: an interdisciplinary approach, Dagstuhl, Germany. Google Scholar
  8. Bown, O., & Lexer, S. (2006). Continuous-time recurrent neural networks for generative and interactive musical performance. In Lecture notes in computer science. Proceedings of EvoWorkshops 2006 (pp. 652–663). Berlin: Springer. Google Scholar
  9. Brown, A. R. (2000). Modes of compositional engagement. Mikropolyphonie, 6.
  10. Brown, A. R. (2001). How the computer assists composers: a survey of contemporary practice. In G. Munro (Ed.), Waveform 2001: the Australasian computer music conference (pp. 9–16). The Australasian computer music association. Google Scholar
  11. Brown, A. R. (2002). Opportunities for evolutionary music composition. In Proceedings of the Australasian computer music conference (pp. 27–34). Google Scholar
  12. Cage, J. (1968). Silence: lectures and writings. London: Calder and Boyars. Google Scholar
  13. Chadabe, J. (1984). Interactive composing: an overview. Computer Music Journal, 8(1), 22–27. CrossRefGoogle Scholar
  14. Clark, A. (2003). Natural-born cyborgs. Oxford: Oxford University Press. Google Scholar
  15. Clark, A. (2008). Supersizing the mind. New York: Oxford University Press. CrossRefGoogle Scholar
  16. Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19. CrossRefGoogle Scholar
  17. Cohen, H. (1995). The further exploits of AARON, painter. Stanford Humanities Review, 4(2), 141–158. Google Scholar
  18. Cole, T., & Cole, P. (2008) Noatikl.
  19. Collins, N. (2009). Introduction to computer music. Chichester: Wiley. Google Scholar
  20. Cope, D. (1996). Experiments in musical intelligence. Madison: A-R Editions. Google Scholar
  21. Cope, D. (2008). Hidden structure: music analysis using computers. Madison: A-R Editions. Google Scholar
  22. Cornock, S., & Edmonds, E. (1973). The creative process where the artist is amplified or superseded by the computer. Leonardo, 6(1), 11–16. CrossRefGoogle Scholar
  23. Csikszentmihalyi, M. (1992). Flow: the psychology of happiness. London: Rider Books. Google Scholar
  24. De Bono, E. (1992). Serious creativity: using the power of lateral thinking to create new ideas. London: Harper Collins. Google Scholar
  25. Dean, R. (2003). Hyperimprovisation: computer-interactive sound improvisation. Middleton: A-R Editions. Google Scholar
  26. Dennett, D. (2001). Collision detection, muselot, and scribbles: some reflections on creativity. In D. Cope (Ed.), Virtual music: computer synthesis of musical style (pp. 282–291). Cambridge: MIT Press. Google Scholar
  27. d’Inverno, M., & Luck, M. (2004). Understanding agent systems. Springer series on agent technology. Berlin: Springer. zbMATHGoogle Scholar
  28. Eno, B. (1996). Generative music.
  29. Eno, B., & Schmidt, P. (1975). Oblique strategies: over 100 worthwhile dilemmas by Brian Eno and Peter Schmidt. London: Apollo. Google Scholar
  30. Essl, K. (1992). Lexikon sonate.
  31. Galanter, P. (2003). What is generative art? complexity theory as a context for art theory. In GA2003—6th generative art conference. Google Scholar
  32. Gell, A. (1998). Art and agency: an anthropological theory. Oxford: Clarendon Press. Google Scholar
  33. Goel, V. (1995). Sketches of thought. Cambridge: MIT Press. Google Scholar
  34. Gudmundsdottir, B. (1996). Björk meets Karlheinz Stockhausen. Dazed and Confused, 23. Google Scholar
  35. Hedemann, C., Sorensen, A., & Brown, A. R. (2008). Metascore: user interface design for generative film scoring. In Proceedings of the Australasian computer music conference (pp. 25–30). Australasian computer music association. Google Scholar
  36. Heidegger, M. (1977). The question concerning technology and other essays. New York: Harper & Row. Google Scholar
  37. Hiller, L. (1968). Music composed with computer[s]: an historical survey. Experimental Music Studio. Google Scholar
  38. Hiller, L. A., & Isaacson, L. M. (1958). Musical composition with a high-speed digital computer. Journal of the Audio Engineering Society, 6(3), 154–160. Google Scholar
  39. Hodges, A. (1985). Alan Turing: the enigma of intelligence. London: Unwin Paperbacks. Google Scholar
  40. Huron, D. (2006). Sweet anticipation: music and the psychology of expectation. Cambridge: MIT Press. Google Scholar
  41. Illich, I. (1973). Tools for conviality. London: Valder & Boyars. Google Scholar
  42. Jewell, M. O., Rhodes, C., & d’Inverno, M. (2010). Querying improvised music: do you sound like yourself? In ISMIR 2010, Utrecht, NL (pp. 483–488). Google Scholar
  43. Jones, D. (2008). AtomSwarm: a framework for swarm improvisation. In Lecture notes in computer science. Proceedings of EvoWorkshops 2008 (pp. 423–432). Berlin: Springer. Google Scholar
  44. Jones, D., Matthias, J., Hodgson, T., Outram, N., Grant, J., & Ryan, N. (2009). The fragmented orchestra. In Proceedings of new interfaces for musical expression (NIME 2009) conference, Pittsburgh, PA, USA. Google Scholar
  45. Jordà, S., Geiger, G., Alonso, M., & Kaltenbrunner, M. (2007). The reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In Proceedings of the first international conference on tangible and embedded interaction (TEI) (pp. 139–146). New York: ACM Press. CrossRefGoogle Scholar
  46. Kittler, F. A. (1999). Gramophone, film, typewriter. Stanford: Stanford University Press. Google Scholar
  47. Klee, P. (1972). Pedagogical sketchbook. London: Faber and Faber. Google Scholar
  48. Kostelanetz, R. (1989). Conversing with cage. London: Omnibus. Google Scholar
  49. Laske, O. (1981). Composition theory in Koenig’s project one and project two. Computer Music Journal, 5(3), 54–65. CrossRefGoogle Scholar
  50. Latour, B. (1994). On technical mediation. Common Knowledge, 3(2), 29–64. Google Scholar
  51. Lewis, G. (2007). On creative machines. In N. Collins & J. d’Escriván (Eds.), The Cambridge companion to electronic music. Cambridge: Cambridge University Press. Google Scholar
  52. Lewis, G. E. (2000). Too many notes: computers, complexity and culture in voyager. Leonardo Music Journal, 10, 33–39. CrossRefGoogle Scholar
  53. Lubart, T. (2005). How can computers be partners in the creative process. International Journal of Human-Computer Studies, 63(4–5), 365–369. CrossRefGoogle Scholar
  54. Magnusson, T. (2009). Of epistemic tools: musical instruments as cognitive extensions. Organised Sound, 14(2), 168–176. CrossRefGoogle Scholar
  55. Matthews, H., & Brotchie, A. (2005). The Oulipo compendium. London: Atlas Press. Google Scholar
  56. McCormack, J. (1996). Grammar based music composition. In R. Stocker, H. Jelinek, B. Durnota & T. Bossomaier (Eds.), Complex systems 96: from local interactions to global phenomena (pp. 321–336). Amsterdam: ISO Press. Google Scholar
  57. McCormack, J. (2003). Evolving sonic ecosystems. Kybernetes, 32(1/2), 184–202. CrossRefGoogle Scholar
  58. McCormack, J., McIlwain, P., Lane, A., & Dorin, A. (2008). Generative composition with nodal. In E. Miranda (Ed.), Workshop on music and artificial life (part of ECAL 2007), Lisbon, Portugal. Google Scholar
  59. McCullough, M. (1996). Abstracting craft: the practiced digital hand. Cambridge: MIT Press. Google Scholar
  60. McGraw, G., & Hofstadter, D. (1993). Perception and creation of diverse alphabetic styles. AISB Quarterly, 85, 42–49. Google Scholar
  61. McLuhan, M. (1964). Understanding media: the extensions of man. London: Sphere Books. Google Scholar
  62. Miranda, E. R., & Matthias, J. (2005). Granular sampling using a Pulse-Coupled network of spiking neurons. In Lecture notes in computer science. Proceedings of EvoWorkshops 2005 (pp. 539–544). Berlin: Springer. Google Scholar
  63. Narmour, E. (1990). The analysis and cognition of basic melodic structures. Chicago: University of Chicago Press. Google Scholar
  64. Nierhaus, G. (2009). Algorithmic composition: paradigms of automatic music generation. Vienna: Springer. Google Scholar
  65. Norman, D. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction: psychology at the human-computer interface (pp. 17–38). Cambridge: Cambridge University Press. Google Scholar
  66. Ortolani, B. (1990). The Japanese theatre: from shamanistic ritual to contemporary pluralism. Leiden: E. J. Brill. Google Scholar
  67. Pachet, F. (2003). The continuator: musical interaction with style. Journal of New Music Research, 32(3), 333–341. CrossRefGoogle Scholar
  68. Pólya, G. (1971). How to solve it: a new aspect of mathematical method (2nd ed.). Princeton: Princeton University Press. Google Scholar
  69. Prévost, E. (2004). Minute particulars: meanings in music—making in the wake of hierarchial realignments and other essays. London: Copula. Google Scholar
  70. Pritchett, J. (1993). The music of John Cage. Cambridge: Cambridge University Press. Google Scholar
  71. Rowe, R. (1993). Interactive music systems: machine listening and composing. Cambridge: MIT Press. Google Scholar
  72. Sawyer, R. K. (2006). Group creativity: musical performance and collaboration. Psychology of Music, 34(2), 148–165. CrossRefGoogle Scholar
  73. Smith, H., & Dean, R. (1997). Improvisation, hypermedia and the arts since 1945. Amsterdam: Harwood. Google Scholar
  74. Spiegel, L. (1981). Manipulations of musical patterns. In Proceedings of the symposium on small computers and the arts (pp. 19–22). Google Scholar
  75. Supper, M. (2001). A few remarks on algorithmic composition. Computer Music Journal, 25(1), 48–53. CrossRefGoogle Scholar
  76. Temperley, D. (2007). Music and probability. Cambridge: MIT Press. zbMATHGoogle Scholar
  77. van Andel, P. (1994). Anatomy of the unsought finding. Serendipity: origin, history, domains, traditions, appearances, patterns and programmability. British Journal for the Philosophy of Science, 45(2), 631–648. CrossRefGoogle Scholar
  78. Wiggins, G., Papadopoulos, G., Phon-Amnuaisuk, S., & Tuson, A. (1999). Evolutionary methods for musical composition. In D. M. Dubois (Ed.), Partial proceedings of the first international conference CASYS’97 on computing anticipatory systems, Liége, Belgium, August 11–15, 1997. International Journal of Computing Anticipatory Systems. Google Scholar
  79. Wiggins, G., Pearce, M., & Mullensiefen, D. (2009). Computational modelling of music cognition and musical creativity. In R. Dean (Ed.), Oxford handbook of computer music (pp. 383–420). Oxford: Oxford University Press. Google Scholar
  80. Winkler, T. (1998). Composing interactive music. Cambridge: MIT Press. Google Scholar
  81. Woolhouse, M. (2009). Modelling tonal attraction between adjacent musical elements. Journal of New Music Research, 38(4). Google Scholar
  82. Xenakis, I. (2001). Formalized music: thought and mathematics in composition. Hillsdale: Pendragon Press. Google Scholar
  83. Young, L. M. (Ed.) (1963). An anthology of chance operations. New York: La Monte Young and Jackson Mac Low. Google Scholar
  84. Young, M. (2008). NN music: improvising with a ‘living’ computer. In R. Kronland-Martinet (Ed.), Computer music modelling and retrieval: sense of sounds (pp. 337–350). Vienna: Springer. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel Jones
    • 1
  • Andrew R. Brown
    • 2
  • Mark d’Inverno
    • 1
  1. 1.GoldsmithsUniversity of LondonLondonUK
  2. 2.Queensland Conservatorium of MusicGriffith UniversityBrisbaneAustralia

Personalised recommendations