Advertisement

Creating New Informational Primitives in Minds and Machines

  • Peter Cariani

Abstract

Creativity involves the generation of useful novelty. Two modes of creating novelty are proposed: via new combinations of pre-existing primitives (combinatoric emergence) and via creation of fundamentally new primitives (creative emergence). The two modes of creativity can be distinguished by whether the changes still fit into an existing framework of possibility, or whether new dimensions in an expanded interpretive framework are needed. Although computers are well suited to generating new combinations, it is argued that computations within a framework cannot produce new primitives for that framework, such that non-computational constructive processes must be utilised to expand the frame. Mechanisms for combinatoric and creative novelty generation are considered in the context of adaptively self-steering and self-constructing goal-seeking percept-action devices. When such systems can adaptively choose their own sensors and effectors, they attain a degree of epistemic autonomy that allows them to construct their own meanings. A view of the brain as a system that creates new neuronal signal primitives that are associated with new semantic and pragmatic meanings is outlined.

Keywords

External World Temporal Code Conceptual Primitive Computational Part Neural Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would like to gratefully thank Margaret Boden, Mark d’Inverno, and Jon McCormack and the Leibniz Center for Informatics for organising and sponsoring the Dagstuhl Seminar on Computational Creativity in July 2009 that made this present work possible.

References

  1. Alexander, S. (1927). Space, time, and deity. London: Macmillan & Co. Google Scholar
  2. Anderson, J. A., Rosenfeld, E., & Pellionisz, A. (1988). Neurocomputing. Cambridge: MIT Press. Google Scholar
  3. Ando, Y., & Cariani, P. G. E. (2009). Auditory and visual sensations. New York: Springer. Google Scholar
  4. Arbib, M. (2003). The handbook of brain theory and neural networks. Cambridge, MA: MIT Press. zbMATHGoogle Scholar
  5. Arbib, M. A. (1989). The metaphorical brain 2: neural nets and beyond. New York: Wiley. Google Scholar
  6. Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge: Cambridge University Press. Google Scholar
  7. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660. Google Scholar
  8. Barsalou, L. W., & Prinz, J. J. (1997). Mundane creativity in perceptual symbol systems. In T. Ward, S. M. Smith & J. Vaid (Eds.), Creative thought: an investigation of conceptual structures and processes (pp. 267–307). Washington: American Psychological Association. CrossRefGoogle Scholar
  9. Bergson, H. (1911). Creative evolution. New York: Henry Holt, and Company. Google Scholar
  10. Bird, J., & Di Paolo, E. (2008). Gordon Pask and his maverick machines. In P. Husbands, O. Holland & M. Wheeler (Eds.), The mechanical mind in history (pp. 185–211). Cambridge: MIT Press. Google Scholar
  11. Boden, M. A. (1990a). The creative mind. London: George Weidenfeld and Nicolson Ltd. Google Scholar
  12. Boden, M. A. (1994). Dimensions of creativity. Cambridge: MIT Press. Google Scholar
  13. Boden, M. A. (1994b). What is creativity? In M. A. Boden (Ed.), Dimensions of creativity (pp. 75–117). Cambridge: MIT Press. Google Scholar
  14. Boden, M. A. (2006). Mind as machine: a history of cognitive science. Oxford: Oxford University Press. Google Scholar
  15. Broad, C. D. (1925). The mind and its place in nature. New York: Harcourt, Brace and Co. Google Scholar
  16. Brooks, R. A. (1999). Cambrian intelligence: the early history of the new AI. Cambridge: MIT Press. zbMATHGoogle Scholar
  17. Carello, C., Turvey, M., Kugler, P. N., & Shaw, R. E. (1984). Inadequacies of the computer metaphor. In M. S. Gazzaniga (Ed.), Handbook of cognitive neuroscience (pp. 229–248). New York: Plenum. Google Scholar
  18. Cariani, P. (1989). On the design of devices with emergent semantic functions. PhD, State University of New York at Binghamton, Binghamton, New York. Google Scholar
  19. Cariani, P. (1992). Emergence and artificial life. In C. Langton, C. Taylor, J. Farmer & S. Rasmussen (Eds.), Santa Fe institute studies in the science of complexity: Vol. X. Artificial life II (pp. 775–798). Redwood: Addison-Wesley. Google Scholar
  20. Cariani, P. (1993). To evolve an ear: epistemological implications of Gordon Pask’s electrochemical devices. Systems Research, 10(3), 19–33. CrossRefGoogle Scholar
  21. Cariani, P. (1995). As if time really mattered: temporal strategies for neural coding of sensory information. Communication and Cognition—Artificial Intelligence (CC-AI), 12(1–2), 161–229. Reprinted in: K. Pribram (Ed.) (1994). Origins: brain and self-organization (pp. 208–252). Hillsdale: Lawrence Erlbaum. Google Scholar
  22. Cariani, P. (1997). Emergence of new signal-primitives in neural networks. Intellectica, 1997(2), 95–143. Google Scholar
  23. Cariani, P. (1998). Towards an evolutionary semiotics: the emergence of new sign-functions in organisms and devices. In G. Van de Vijver, S. Salthe & M. Delpos (Eds.), Evolutionary systems (pp. 359–377). Dordrecht: Kluwer. Google Scholar
  24. Cariani, P. (1999). Temporal coding of periodicity pitch in the auditory system: an overview. Neural Plasticity, 6(4), 147–172. CrossRefGoogle Scholar
  25. Cariani, P. (2000). Regenerative process in life and mind. In J. L. R. Chandler & G. Van de Vijver (Eds.), Annals of the New York academy of sciences: Vol. 901. Closure: emergent organizations and their dynamics, New York (pp. 26–34). Google Scholar
  26. Cariani, P. (2001a). Neural timing nets. Neural Networks, 14(6–7), 737–753. CrossRefGoogle Scholar
  27. Cariani, P. (2001b). Symbols and dynamics in the brain. Biosystems, 60(1–3), 59–83. CrossRefGoogle Scholar
  28. Cariani, P. (2001c). Temporal coding of sensory information in the brain. Acoustical Science and Technology, 22(2), 77–84. CrossRefGoogle Scholar
  29. Cariani, P. (2002). Extradimensional bypass. Biosystems, 64(1–3), 47–53. CrossRefGoogle Scholar
  30. Cariani, P. (2004). Temporal codes and computations for sensory representation and scene analysis. IEEE Transactions on Neural Networks, Special Issue on Temporal Coding for Neural Information Processing, 15(5), 1100–1111. Google Scholar
  31. Cariani, P. (2011). The semiotics of cybernetic percept-action systems. International Journal of Signs and Semiotic Systems, 1(1), 1–17. MathSciNetCrossRefGoogle Scholar
  32. Cariani, P. A., & Delgutte, B. (1996). Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, and the dominance region for pitch. J. Neurophysiology, 76. Google Scholar
  33. Cariani, P., & Micheyl, C. (2012). Towards a theory of infomation processing in the auditory cortex. In D. Poeppel, T. Overath & A. Popper (Eds.), Human auditory cortex: Springer handbook of auditory research (pp. 351–390). New York: Springer. Google Scholar
  34. Carpenter, G., & Grossberg, S. (2003). Adaptive resonance theory. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 87–90). Cambridge: MIT Press. Google Scholar
  35. Chen, J.-C., & Conrad, M. (1994). A multilevel neuromolecular architecture that uses the extradimensional bypass principle to facilitate evolutionary learning. Physica D, 75, 417–437. zbMATHCrossRefGoogle Scholar
  36. Chung, S., Raymond, S., & Lettvin, J. (1970). Multiple meaning in single visual units. Brain, Behavior and Evolution, 3, 72–101. CrossRefGoogle Scholar
  37. Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge: MIT Press. Google Scholar
  38. Clayton, P. (2004). Mind and emergence: from quantum to consciousness. Oxford: Oxford University Press. Google Scholar
  39. Conrad, M. (1998). Towards high evolvability dynamics. In G. Van de Vijver, S. Salthe & M. Delpos (Eds.), Evolutionary systems (pp. 33–43). Dordrecht: Kluwer. Google Scholar
  40. de Latil, P. (1956). Thinking by machine. Boston: Houghton Mifflin. Google Scholar
  41. Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition, 79(1–2), 1–37. CrossRefGoogle Scholar
  42. Emmers, R. (1981). Pain: a spike-interval coded message in the brain. New York: Raven Press. Google Scholar
  43. Fodor, J. (1980). On the impossibility of acquiring “more powerful” structures: fixation of belief and knowledge acquisition. In M. Piatelli-Palmarini (Ed.), Language and learning: the debate between Jean Piaget and Noam Chomsky (pp. 142–162). Cambridge: Harvard. Google Scholar
  44. Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated evolution. New York: Wiley. zbMATHGoogle Scholar
  45. Goodman, N. (1972). A world of individuals. In N. Goodman (Ed.), Problems and projects (pp. 155–172). Indianapolis: Bobbs-Merrill. Originally appeared in The Problem of Universals, Notre Dame Press, 1956. Google Scholar
  46. Grossberg, S. (1988). The adaptive brain, Vols I. and II. New York: Elsevier. Google Scholar
  47. Hebb, D. O. (1949). The organization of behavior. New York: Simon and Schuster. Google Scholar
  48. Hodges, A. (2008). What did Alan Turing mean by “machine”? In P. Husbands, O. Holland & M. Wheeler (Eds.), The mechanical mind in history (pp. 75–90). Cambridge: MIT Press. Google Scholar
  49. Holland, J. (1998). Emergence. Reading: Addison-Wesley. zbMATHGoogle Scholar
  50. Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor: University of Michigan Press. Google Scholar
  51. Horgan, T., & Tienson, J. (1996). Connectionism and the philosophy of psychology. Cambridge: MIT Press. Google Scholar
  52. Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural Computation, 18(2), 245–282. MathSciNetzbMATHCrossRefGoogle Scholar
  53. John, E. R. (1967). Electrophysiological studies of conditioning. In G. C. Quarton, T. Melnechuk & F. O. Schmitt (Eds.), The neurosciences: a study program (pp. 690–704). New York: Rockefeller University Press. Google Scholar
  54. John, E. R. (1972). Switchboard vs. statistical theories of learning and memory. Science, 177, 850–864. CrossRefGoogle Scholar
  55. Kampis, G. (1991). Self-modifying systems in biology and cognitive science. Oxford: Pergamon Press. Google Scholar
  56. Kanerva, P. (1988). Sparse distributed memory. Cambridge: MIT Press. zbMATHGoogle Scholar
  57. Kilmer, W., & McCulloch, W. (1969). The reticular formation command and control system. In K. Leibovic (Ed.), Information processing in the nervous system (pp. 297–307). New York: Springer. Google Scholar
  58. Kim, J. (1998). Mind in a physical world: an essay on the mind-body problem and mental causation. Cambridge: MIT Press. Google Scholar
  59. Kim, J. (2008). Making sense of emergence. In M. Bedau & P. Humphreys (Eds.), Emergence: contemporary readings in philosophy and science (pp. 127–153). Cambridge: MIT Press. Google Scholar
  60. Koch, C. (2004). The quest for consciousness: a neurobiological approach. Denver: Roberts and Co. Google Scholar
  61. Machotka, P. (1980). Daniel Berlyne’s contributions to empirical aesthetics. Motivation and Emotion, 4, 113–121. CrossRefGoogle Scholar
  62. MacKay, D. G. (1987). The organization of perception and action. New York: Springer. zbMATHCrossRefGoogle Scholar
  63. Marcus, G. F. (2001). The algebraic mind. Cambridge: MIT Press. Google Scholar
  64. Maruyama, M. (1977). Heterogenistics: an epistemological restructuring of biological and social sciences. Cybernetica, 20, 69–86. Google Scholar
  65. Maturana, H. R. (1981). Autopoiesis. In M. Zeleny (Ed.), Autopoiesis: a theory of the living. New York: North Holland. Google Scholar
  66. Maturana, H., & Varela, F. (1973). Autopoiesis: the organization of the living. In H. Maturana & F. Varela (Eds.), Boston studies in the philosophy of science: Vol. 42. Autopoiesis and cognition (1980). Dordrecht: Reidel. Google Scholar
  67. McCulloch, W. S. (1965). Embodiments of mind. Cambridge: MIT Press. Google Scholar
  68. Miller, R. (2000). Time and the brain, conceptual advances in brain research. Australia: Harwood Academic Publishers/Gordon and Breach. Google Scholar
  69. Mingers, J. (1995). Self-producing systems. New York: Plenum Press. Google Scholar
  70. Morgan, L. (1931). Emergent evolution (3rd ed.). New York: Henry Holt. Google Scholar
  71. Morrell, F. (1967). Electrical signs of sensory coding. In G. Quarton, T. Melnechuck, & F. Schmitt (Eds.), The neurosciences: a study program (pp. 452–469). New York: Rockefeller University Press. Google Scholar
  72. Morris, C. (1946). Signs, language, and behavior. New York: George Braziller. Google Scholar
  73. Mountcastle, V. (1967). The problem of sensing and the neural coding of sensory events. In G. Quarton, T. Melnechuk & F. Schmitt (Eds.), The neurosciences: a study program. New York: Rockefeller University Press. Google Scholar
  74. Nöth, W. (1990). Handbook of semiotics. Indianapolis: Indiana University Press. Google Scholar
  75. Orbach, J. (1998). The neuropsychological theories of Lashley and Hebb. Lanham: University Press of America. Google Scholar
  76. Pask, G. (1959). Physical analogues to the growth of a concept (pp. 765–794). London: H.M.S.O. Google Scholar
  77. Pask, G. (1960). The natural history of networks. In M. Yovits & S. Cameron (Eds.), Self-Organizing systems. Proceedings of an interdisciplinary conference, May 5–6, 1959 (pp. 232–263). New York: Pergamon Press. Google Scholar
  78. Pask, G. (1961). An approach to cybernetics. Science today series. New York: Harper and Brothers. Google Scholar
  79. Pattee, H. H. (1982). Cell psychology: an evolutionary view of the symbol-matter problem. Cognition and Brain Theory, 5, 325–341. Google Scholar
  80. Pattee, H. H. (1996). The problem of observables in models of biological organizations. In E. L. Khalil & K. E. Boulding (Eds.), Evolution, order, and complexity (pp. 249–264). London: Routledge. Google Scholar
  81. Pattee, H. H. (2008). The necessity of biosemiotics: matter-symbol complementarity. In M. Barbieri (Ed.), Introduction to biosemiotics (pp. 115–132). Dordrecht: Springer. Google Scholar
  82. Pepper, S. C. (1942). World hypotheses, a study in evidence. Berkeley: University of California Press. Google Scholar
  83. Perkell, D., & Bullock, T. (1968). Neural coding. Neurosciences Research Program Bulletin, 6(3), 221–348. Google Scholar
  84. Piaget, J. (1980). The psychogenesis of knowledge and its epistemological significance. In M. Piatelli-Palmarini (Ed.), Language and learning. The debate between Jean Piaget and Noam Chomsky (pp. 23–34). Cambridge: Harvard University Press. Google Scholar
  85. Piatelli-Palmarini, M. (1980). How hard is the hard core of a scientific paradigm? In M. Piatelli-Palmarini (Ed.), Language and learning. The debate between Jean Piaget and Noam Chomsky. Cambridge: Harvard University Press. Google Scholar
  86. Pickering, A. (2010). The cybernetic brain: sketches of another future. Chicago: University of Chicago Press. Google Scholar
  87. Powers, W. (1973). Behavior: the control of perception, New York: Aldine. Google Scholar
  88. Pratt, G. (1990). Pulse computation. PhD, M.I.T. Google Scholar
  89. Raymond, S., & Lettvin, J. (1978). Aftereffects of activity in peripheral axons as a clue to nervous coding. In S. Waxman (Ed.), Physiology and pathobiology of axons. New York: Raven Press. Google Scholar
  90. Redgrave, P. (2007). Basal ganglia. Scholarpedia, 2(6), 1825. CrossRefGoogle Scholar
  91. Rocha, L. (1996). Eigen-states and symbols. Systems Research, 13(3), 371–384. MathSciNetCrossRefGoogle Scholar
  92. Rose, D. (2006). Consciousness. Philosophical, psychological, and neural theories. Oxford: Oxford University Press. Google Scholar
  93. Rosen, R. (1985). Anticipatory systems. Oxford: Pergamon Press. zbMATHGoogle Scholar
  94. Rosen, R. (1991). Life itself. New York: Columbia University Press. Google Scholar
  95. Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron, 24(1), 49–65. 111–125. CrossRefGoogle Scholar
  96. Skrbina, D. (2005). Panpsychism in the west. Cambridge: MIT Press. Google Scholar
  97. Sommerhoff, G. (1974). Logic of the living brain. London: Wiley. Google Scholar
  98. Stewart, J. (2000). From autopoiesis to semantic closure. Annals of the New York Academy of Sciences, 901, 155–162. CrossRefGoogle Scholar
  99. Stewart, R. M. (1969). Electrochemically active field-trainable pattern recognition systems. IEEE Transactions on Systems Science and Cybernetics, SSC-5(3), 230–237. CrossRefGoogle Scholar
  100. Thatcher, R. W., & John, E. R. (1977). Functional neuroscience, Vol. I. Foundations of cognitive processes. Hillsdale: Lawrence Erlbaum. Google Scholar
  101. Turing, A. (1939). Systems of logic based on ordinals. Proceedings of the London Mathematical Society, 45(2), 161–228. MathSciNetCrossRefGoogle Scholar
  102. van Fraassen, B. C. (1980). The scientific image. Oxford: Oxford University Press. CrossRefGoogle Scholar
  103. Varela, F. (1979). Principles of biological autonomy. New York: North Holland. Google Scholar
  104. von Foerster, H. (2003). Understanding understanding: essays on cybernetics and cognition. New York: Springer. Google Scholar
  105. von Glasersfeld, E. (1992). Aspects of constructivism: Vico, Berkely, Piaget. In M. Ceruti (Ed.), Evoluzione e conoscenza, Lubrina, Bergamo, Italy (pp. 421–432). Reprinted in von Glasersfeld, Key works of radical constructivism (pp. 421–429). Google Scholar
  106. von Glasersfeld, E. (2007). Cybernetics and the theory of knowledge. In M. Larochelle (Ed.), Key works in radical constructivism (pp. 153–169). Rotterdam: Sense Publishers. Google Scholar
  107. von Neumann, J. (1951). The general and logical theory of automata, in. In L. A. Jeffress (Ed.), Cerebral mechanisms of behavior (the Hixon symposium) (pp. 1–41). New York: Wiley. Google Scholar
  108. Wasserman, G. S. (1992). Isomorphism, task dependence, and the multiple meaning theory of neural coding. Biological Signals, 1, 117–142. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Otology & LaryngologyHarvard Medical SchoolBostonUSA

Personalised recommendations