Skip to main content

Generative and Adaptive Creativity: A Unified Approach to Creativity in Nature, Humans and Machines

  • Chapter

Abstract

Computational creativity is not limited to the study of human-like creativity and forces us to think about creativity as a general process that can be applied wherever new things come into existence. In this chapter I propose that in order to unify various forms of creativity it is necessary to consider a distinction between two types of creativity: generative creativity, in which things are created as the result of a process regardless of their value, and adaptive creativity, in which things are created as adaptive responses by a system to its situation. Whilst individual human creativity is typically of the adaptive form, collectively humans are engaged in processes of generative creativity as well as adaptive creativity. It is helpful to understand human creative behaviour as part of a social process involving these two aspects, and this is relevant to understanding how manmade artefacts can act as creative agents in social networks.

Keywords

  • Natural Evolution
  • Creative Process
  • Generative Creativity
  • Human Creativity
  • Creative System

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31727-9_14
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-31727-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)

Notes

  1. 1.

    Discussions on this topic can be found in the chapters by Cariani (Chap. 15) and McCormack (Chap. 2) in this book, in earlier work in computational creativity by, for example, Bentley (1999b), Perkins (1996) and Thornton (2007), and in more remote areas of study such as Bergson (1998) and de Landa (1991).

References

  • Arthur, W. B. (2009). The nature of technology: what it is and how it evolves. Baltimore: Penguin.

    Google Scholar 

  • Axelrod, R. (1997). The complexity of cooperation. Princeton: Princeton University Press.

    Google Scholar 

  • Barkow, J. H., Cosmides, L., & Tooby, J. (1992). The adapted mind: evolutionary psychology and the generation of culture. New York: OUP.

    Google Scholar 

  • Bentley, P. J. (1999a). From coffee tables to hospitals: generic evolutionary design. In P. J. Bentley (Ed.), Evolutionary design by computers. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Bentley, P. J. (Ed.) (1999b). Evolutionary design by computers. San Francisco: Morgan Kaufmann.

    MATH  Google Scholar 

  • Bergson, H. (1998). Creative evolution. New York: Dover.

    Google Scholar 

  • Bird, J., & Stokes, D. (2006). Evolving minimally creative robots. In S. Colton & A. Pease (Eds.), Proceedings of the third joint workshop on computational creativity (ECAI ’06) (pp. 1–5).

    Google Scholar 

  • Blackmore, S. J. (1999). The meme machine. New York: OUP.

    Google Scholar 

  • Boden, M. (1990). The creative mind. George Weidenfeld and Nicolson Ltd.

    Google Scholar 

  • Bown, O. (2008). Theoretical and computational models of cohesion, competition and maladaptation in the evolution of human musical behaviour. PhD thesis, Department of Computing, Goldsmiths College, University of London.

    Google Scholar 

  • Bown, O. (2009). Ecosystem models for real-time generative music: A methodology and framework. In Proceedings of the 2009 international computer music conference (ICMC 2009), Montreal, Canada.

    Google Scholar 

  • Bown, O., & Wiggins, G. A. (2005). Modelling musical behaviour in a cultural-evolutionary system. In P. Gervàs, T. Veale, & A. Pease (Eds.), Proceedings of the IJCAI’05 workshop on computational creativity.

    Google Scholar 

  • Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago: University of Chicago Press.

    Google Scholar 

  • Brown, S. (2007). Contagious heterophony: A new theory about the origins of music. Musicæ Scientiæ, 11(1), 3–26.

    CrossRef  Google Scholar 

  • Clark, A. (2003). Natural-born cyborgs: minds, technologies, and the future of human intelligence. London: Oxford University Press.

    Google Scholar 

  • Coe, K. (2003). The ancestress hypothesis: visual art as adaptation. New Brunswick: Rutgers University Press.

    Google Scholar 

  • Conte, R., & Paolucci, M. (2001). Intelligent social learning. Journal of Artificial Societies and Social Simulation, 4(1).

    Google Scholar 

  • Cross, I. (2006). The origins of music: some stipulations on theory. Music Perception, 24(1), 79–82.

    CrossRef  Google Scholar 

  • Csikszentmihalyi, M. (1996). Creativity: flow and the psychology of discovery and invention. New York: Harper Collins.

    Google Scholar 

  • Csikszentmihalyi, M. (1999). Implications of a systems perspective for the study of creativity. In R. J. Sternberg (Ed.), The handbook of creativity. New York: Cambridge University Press.

    Google Scholar 

  • Dawkins, R. (1976). The selfish gene. New York: OUP.

    Google Scholar 

  • Dawkins, R. (1986). The blind watchmaker: why the evidence of evolution reveals a universe without design. London: Penguin.

    Google Scholar 

  • de Landa, M. D. (1991). War in the age of intelligent machines. Swerve Editions.

    Google Scholar 

  • Diamond, J. M. (1992). The rise and fall of the third chimpanzee. New York: Vintage.

    Google Scholar 

  • Dissanayake, E. (2000). Antecedents of the temporal arts in early mother-infant interaction. In N. L. Wallin, B. Merker & S. Brown (Eds.), The origins of music. Cambridge: MIT Press.

    Google Scholar 

  • Dunbar, R. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178–190.

    CrossRef  Google Scholar 

  • Fisher, R. A. (1958). The genetical theory of natural section. London: Dover.

    Google Scholar 

  • Gell, A. (1998). Art and agency: an anthropological theory. Oxford: Clarendon Press.

    Google Scholar 

  • Gilbert, N. (1993). Computer simulation of social processes. Social Research Update, 6. University of Surrey.

    Google Scholar 

  • Greenfield, G. R. (2006). Art by computer program == programmer creativity. Digital Creativity, 17(1), 25–35.

    CrossRef  Google Scholar 

  • Hagen, E. H., & Bryant, G. A. (2003). Music and dance as a coalition signaling system. Human Nature, 14(1), 21–51.

    CrossRef  Google Scholar 

  • Hamilton, W. D. (1963). The evolution of altruistic behaviour. American Naturalist, 97, 354–356.

    CrossRef  Google Scholar 

  • Hargreaves, D. J. (1986). The developmental psychology of music. Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • Huron, D. (2001). Is music an evolutionary adaptation. In R. J. Zatorre & I. Peretz (Eds.), Annals of the New York academy of sciences: Vol. 960. The biological foundations of music (pp. 43–61). New York: New York Academy of Sciences.

    Google Scholar 

  • Krebs, J. R., & Dawkins, R. (1984). Animal signals: mind reading and manipulation. In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology: an evolutionary approach (2nd ed., pp. 380–402). Oxford: Blackwell.

    Google Scholar 

  • Laland, K. N., Odling-Smee, J., & Feldman, M. W. (1999). Niche construction, biological evolution and cultural change. Behavioral and Brain Sciences, 21(1).

    Google Scholar 

  • Latour, B. (1993). We have never been modern. Cambridge: Harvard University Press.

    Google Scholar 

  • Lévi-Strauss, C. (1971). The elementary structures of kinship. Beacon Press.

    Google Scholar 

  • Lewis, G. E. (2000). Too many notes: computers, complexity and culture in voyager. Leonardo Music Journal, 10, 33–39.

    CrossRef  Google Scholar 

  • Lovelock, J. (1979). Gaia. A new look at life on Earth. New York: OUP.

    Google Scholar 

  • Martindale, C. (1990). The clockwork muse: the predictability of artistic change. New York: Basic Books.

    Google Scholar 

  • Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. New York: Oxford University Press.

    Google Scholar 

  • McCorduck, P. (1990). AARON’s code: meta-art, artificial intelligence, and the work of Harold Cohen. New York: Freeman.

    Google Scholar 

  • McCormack, J. (2008). Facing the future: evolutionary possibilities for human-machine creativity. In J. Romero & P. Machado (Eds.), The art of artificial evolution: a handbook on evolutionary art and music (pp. 417–451). Heidelberg: Springer.

    Google Scholar 

  • McCormack, J., & Bown, O. (2009). Life’s what you make: niche construction and evolutionary art. In Applications of evolutionary computing: EvoWorkshops, 2009.

    Google Scholar 

  • Merker, B. (2001). Synchronous chorusing and human origins. In N. L. Wallin, B. Merker & S. Brown (Eds.), The origins of music, Cambridge: MIT Press.

    Google Scholar 

  • Miller, G. (2000). The mating mind. New York: Random House.

    Google Scholar 

  • Miranda, E. R., Kirby, S., & Todd, P. M. (2003). On computational models of the evolution of music: from the origins of musical taste to the emergence of grammars. Contemporary Music Review, 22(3), 91–111.

    CrossRef  Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: the neglected process in evolution. Monographs in population biology: Vol. 37. Princeton: Princeton University Press.

    Google Scholar 

  • Owings, D. H., & Morton, E. S. (1998). Animal vocal communication: a new approach. New York: Cambridge University Press.

    CrossRef  Google Scholar 

  • Parncutt, R. (2009). Prenatal and infant conditioning, the mother schema, and the origins of music and religion. MusicæScientiæ, 119–150. Special issue on evolution and music.

    Google Scholar 

  • Pearce, M. T., & Wiggins, G. A. (2001). Towards a framework for the evaluation of machine compositions. In Proceedings of the AISB’01 symposium on artificial intelligence and creativity in the arts and sciences (pp. 22–32). Brighton: SSAISB.

    Google Scholar 

  • Perkins, D. N. (1996). Creativity: beyond the Darwinian paradigm. In M. Boden (Ed.), Dimensions of creativity (Chap. 5, pp. 119–142). Cambridge: MIT Press.

    Google Scholar 

  • Pinker, S. (1998). How the mind works. London: Allen Lane The Penguin Press.

    Google Scholar 

  • Richman, B. (2001). How music fixed “nonsense” into significant formulas: on rhythm, repetition and meaning. In N. L. Wallin, B. Merker & S. Brown (Eds.), The origins of music. Cambridge: MIT Press.

    Google Scholar 

  • Romero, J., Machado, P., & Santos, A. (2009). On the socialization of evolutionary art. In M. Giacobini, A. Brabazon, S. Cagnoni, G. A. Di Caro, A. Ekárt, A. Esparcia-Alcázar, M. Farooq, A. Fink, P. Machado, J. McCormack, M. O’Neill, F. Neri, M. Preuss, F. Rothlauf, E. Tarantino & S. Yang (Eds.), Lecture notes in computer science: Vol5484. EvoWorkshops (pp. 557–566). Berlin: Springer.

    Google Scholar 

  • Saunders, R. (2001). Curious design agents and artificial creativity. PhD thesis, Faculty of Architecture, The University of Sydney.

    Google Scholar 

  • Saunders, R., & Gero, J. S. (2001). The digital clockwork muse: a computational model of aesthetic evolution. In G. A. Wiggins (Ed.), Proceedings of the AISB’01 symposium on AI and creativity in arts and science, SSAISB, University of York, York, UK (pp. 12–21).

    Google Scholar 

  • Secretan, J., Beato, N., Ambrosio, D. B., Rodriguez, A., Campbell, A., & Stanley, K. O. (2008). Picbreeder: evolving pictures collaboratively online. In CHI ’08: proceeding of the twenty-sixth annual SIGCHI conference on human factors in computing systems (pp. 1759–1768). New York: ACM.

    CrossRef  Google Scholar 

  • Sims, K. (1994). Artificial life IV proceedings. In Evolving 3D morphology and behaviour by competition. Cambridge: MIT Press.

    Google Scholar 

  • Sobel, D. (1996). Longitude: the true story of a lone genius who solved the greatest scientific problem of his time. Baltimore: Penguin.

    Google Scholar 

  • Sosa, R., & Gero, J. S. (2003). Design and change: a model of situated creativity. In C. Bento, A. Cardoso & J. Gero (Eds.), Proceedings of the IJCAI’03 workshop on creative systems.

    Google Scholar 

  • Sperber, D. (2000). An objection to the memetic approach to culture. In Darwinizing culture. London: Oxford University Press.

    Google Scholar 

  • Sperber, D. (2007). Seedless grapes: nature and culture. In E. Margolis & S. Laurence (Eds.), Creations of the mind: theories of artefacts and their representation. London: Oxford University Press. Chapter 7.

    Google Scholar 

  • Stanley, K. O., & Miikkulainen, R. (2004). Competitive coevolution through evolutionary complexification. Journal of Artificial Intelligence Research, 21, 63–100.

    Google Scholar 

  • Takagi, H. (2001). Interactive evolutionary computation: fusion of the capabilities of ec optimization and human evaluation. Proceedings of the IEEE, 89, 1275–1296.

    CrossRef  Google Scholar 

  • Thornton, C. (2007). How thinking inside the box can become thinking outside the box. In A. Cardoso & G. A. Wiggins (Eds.), Proceedings of the 4th international joint workshop on computational creativity (pp. 113–119). Goldsmiths: University of London.

    Google Scholar 

  • Tomasello, M. (1999). The cultural origins of human cognition. Harvards: Harvard University Press.

    Google Scholar 

  • Whitelaw, M. (2004). Metacreation: art and artificial life. Cambridge: MIT Press.

    Google Scholar 

  • Williams, R. (1983). Keywords (revised ed.). London: Fontana Press.

    Google Scholar 

  • Wilson, E. O. (1975). Sociobiology: the new synthesis. Harvards: Harvard University Press.

    Google Scholar 

  • Zahavi, A. (1975). Mate selection—a selection for a handicap. Journal of Theoretical Biology, 53(1), 205–214.

    CrossRef  Google Scholar 

Download references

Acknowledgements

This chapter stems from ideas formed during my PhD with Geraint Wiggins at Goldsmiths, University of London, and further developed whilst working as a post-doctoral researcher at the Centre for Electronic Media Art (CEMA), with Jon McCormack (funded by the Australian Research Council under Discovery Project grant DP0877320). I thank Jon, Alan Dorin, Alice Eldridge and the other members of CEMA for two years of fascinating recursive discussions.

I am grateful to all of the attendees of the 2009 Dagstuhl symposium on Computational Creativity, in particular the organisers, Jon McCormack, Mark d’Inverno and Maggie Boden, for contributing to a first-rate creative experience. I also thank the anonymous reviewers for their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Bown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bown, O. (2012). Generative and Adaptive Creativity: A Unified Approach to Creativity in Nature, Humans and Machines. In: McCormack, J., d’Inverno, M. (eds) Computers and Creativity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31727-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31727-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31726-2

  • Online ISBN: 978-3-642-31727-9

  • eBook Packages: Computer ScienceComputer Science (R0)