Skip to main content

Computing Aesthetics with Image Judgement Systems

  • Chapter

Abstract

The ability of human or artificial agents to evaluate their works, as well as the works of others, is an important aspect of creative behaviour, possibly even a requirement. In artistic fields such as visual arts and music, this evaluation capacity relies, at least partially, on aesthetic judgement. This chapter analyses issues regarding the development of computational systems that perform aesthetic judgements focusing on their validation. We present several alternatives, as follows: the use of psychological tests related to aesthetic judgement; the testing of these systems in style recognition tasks; and the assessment of the system’s ability to predict the users’ valuations or the popularity of a given work. An adaptive system is presented and its performance assessed using the above-mentioned validation methodologies.

Keywords

  • Artificial Neural Network
  • Psychological Test
  • Content Base Image Retrieval
  • Evolutionary Engine
  • Aesthetic Property

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31727-9_11
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-31727-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3

Notes

  1. 1.

    Photos of DJT can be found at: http://www.flickr.com/photos/robgiampietro/sets/72157611584992173/with/3136292750/.

  2. 2.

    http://137.189.97.48/PhotoqualityEvaluation/download.html.

  3. 3.

    Available from http://ritendra.weebly.com/aesthetics-datasets.html.

  4. 4.

    Some of the test items are triads, hence the lower percentage.

References

  • Arnheim, R. (1956). Art and visual perception, a psychology of the creative eye. London: Faber and Faber.

    Google Scholar 

  • Arnheim, R. (1966). Towards a psychology of art/entropy and art—an essay on disorder and order. The Regents of the University of California.

    Google Scholar 

  • Arnheim, R. (1969). Visual thinking. Berkeley: University of California Press.

    Google Scholar 

  • Athitsos, V., Swain, M. J., & Frankel, C. (1997). Distinguishing photographs and graphics on the world wide web. In Proceedings of the 1997 workshop on content-based access of image and video libraries (CBAIVL ’97), CAIVL ’97 (pp. 10–17). Washington: IEEE Computer Society. http://portal.acm.org/citation.cfm?id=523204.791698.

    CrossRef  Google Scholar 

  • Baluja, S., Pomerlau, D., & Todd, J. (1994). Towards automated artificial evolution for computer-generated images. Connection Science, 6(2), 325–354.

    CrossRef  Google Scholar 

  • Boden, M. A. (1990). The creative mind: myths and mechanisms. New York: Basic Books.

    Google Scholar 

  • Burt, C. (1933). The psychology of art. In How the mind works. London: Allen and Unwin.

    Google Scholar 

  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698.

    CrossRef  Google Scholar 

  • Chamorro-Premuzic, T., & Furnham, A. (2004). Art judgement: a measure related to both personality and intelligence? Imagination, Cognition and Personality, 24, 3–25.

    CrossRef  Google Scholar 

  • Cope, D. (1992). On the algorithmic representation of musical style. In O. Laske (Ed.), Understanding music with AI: perspectives on music cognition (pp. 354–363). Cambridge: MIT Press.

    Google Scholar 

  • Cutzu, F., Hammoud, R. I., & Leykin, A. (2003). Estimating the photorealism of images: distinguishing paintings from photographs. In CVPR (2) (pp. 305–312). Washington: IEEE Computer Society.

    Google Scholar 

  • Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2006). Studying aesthetics in photographic images using a computational approach. In Lecture notes in computer science. Computer vision—ECCV 2006, 9th European conference on computer vision, part III, Graz, Austria (pp. 288–301). Berlin: Springer.

    Google Scholar 

  • Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image retrieval: ideas, influences, and trends of the new age. ACM Computing Surveys, 40, 5:1–5:60. http://doi.acm.org/10.1145/1348246.1348248.

    CrossRef  Google Scholar 

  • Dorin, A., & Korb, K. B. (2009). Improbable creativity. In M. Boden, M. D’Inverno, & J. McCormack (Eds.), Dagstuhl seminar proceedings: Vol. 09291. Computational creativity: an interdisciplinary approach, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2009/2214.

    Google Scholar 

  • Eysenck, H. (1969). Factor analytic study of the Maitland Graves Design Judgement Test. Perceptual and Motor Skills, 24, 13–14.

    Google Scholar 

  • Eysenck, H. J. (1983). A new measure of ‘good taste’ in visual art. Leonardo, Special Issue: Psychology and the Arts, 16(3), 229–231. http://www.jstor.org/stable/1574921.

    Google Scholar 

  • Eysenck, H. J., & Castle, M. (1971). Comparative study of artists and nonartists on the Maitland Graves Design Judgment Test. Journal of Applied Psychology, 55(4), 389–392.

    CrossRef  Google Scholar 

  • Eysenck, H. J., Götz, K. O., Long, H. Y., Nias, D. K. B., & Ross, M. (1984). A new visual aesthetic sensitivity test—IV. Cross-cultural comparisons between a Chinese sample from Singapore and an English sample. Personality and Individual Differences, 5(5), 599–600. http://www.sciencedirect.com/science/article/B6V9F-45WYSPS-1M/2/1b43c2e7ad32ef89313f193d3358b441.

    CrossRef  Google Scholar 

  • Field, D. J., Hayes, A., & Hess, R. F. (2000). The roles of polarity and symmetry in the perceptual grouping of contour fragments. Spatial Vision, 13(1), 51–66.

    CrossRef  Google Scholar 

  • Fisher, Y. (Ed.) (1995). Fractal image compression: theory and application. London: Springer.

    Google Scholar 

  • Frois, J., & Eysenck, H. J. (1995). The visual aesthetic sensitivity test applied to Portuguese children and fine arts students. Creativity Research Journal, 8(3), 277–284. http://www.leaonline.com/doi/abs/10.1207/s15326934crj0803_6.

    CrossRef  Google Scholar 

  • Furnham, A., & Walker, J. (2001). The influence of personality traits, previous experience of art, and demographic variables on artistic preference. Personality and Individual Differences, 31(6), 997–1017. http://www.sciencedirect.com/science/article/B6V9F-440BD9B-J/2/c107a7e1db8199da25fb754780a7d220.

    CrossRef  Google Scholar 

  • Götz, K. (1985). VAST: visual aesthetic sensitivity test. Dusseldorf: Concept Verlag.

    Google Scholar 

  • Götz, K. O., & Götz, K. (1974). The Maitland Graves Design Judgement Test judged by 22 experts. Perceptual and Motor Skills, 39, 261–262.

    CrossRef  Google Scholar 

  • Graves, M. (1946). Design judgement test. New York: The Psychological Corporation.

    Google Scholar 

  • Graves, M. (1948). Design judgement test, manual. New York: The Psychological Corporation.

    Google Scholar 

  • Graves, M. (1951). The art of color and design. New York: McGraw-Hill.

    Google Scholar 

  • Itten, J. (1973). The art of color: the subjective experience and objective rationale of color. New York: Wiley.

    Google Scholar 

  • Iwawaki, S., Eysenck, H. J., & Götz, K. O. (1979). A new visual aesthetic sensitivity test (vast): II. Cross cultural comparison between England and Japan. Perceptual and Motor Skills, 49(3), 859–862. http://www.biomedsearch.com/nih/new-Visual-Aesthetic-Sensitivity-Test/530787.html.

    CrossRef  Google Scholar 

  • Ke, Y., Tang, X., & Jing, F. (2006). The design of high-level features for photo quality assessment. Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 1, 419–426.

    Google Scholar 

  • Kowaliw, T., Dorin, A., & McCormack, J. (2009). An empirical exploration of a definition of creative novelty for generative art. In K. B. Korb, M. Randall & T. Hendtlass (Eds.), Lecture notes in computer science: Vol. 5865. ACAL (pp. 1–10). Berlin: Springer.

    Google Scholar 

  • Luo, Y., & Tang, X. (2008). Photo and video quality evaluation: focusing on the subject. In D. A. Forsyth, P. H. S. Torr & A. Zisserman (Eds.), Lecture notes in computer science: Vol. 5304. ECCV (3) (pp. 386–399). Berlin: Springer.

    Google Scholar 

  • Lyu, S., & Farid, H. (2005). How realistic is photorealistic? IEEE Transactions on Signal Processing, 53(2), 845–850.

    MathSciNet  CrossRef  Google Scholar 

  • Machado, P., & Cardoso, A. (1998). Computing aesthetics. In F. Oliveira (Ed.), Lecture notes in computer science: Vol. 1515. Proceedings of the XIVth Brazilian symposium on artificial intelligence: advances in artificial intelligence, Porto Alegre, Brazil (pp. 219–229). Berlin: Springer.

    Google Scholar 

  • Machado, P., & Cardoso, A. (2002). All the truth about NEvAr. Applied Intelligence, Special Issue on Creative Systems, 16(2), 101–119.

    MATH  Google Scholar 

  • Machado, P., Romero, J., & Manaris, B. (2007). Experiments in computational aesthetics: an iterative approach to stylistic change in evolutionary art. In J. Romero & P. Machado (Eds.), The art of artificial evolution: a handbook on evolutionary art and music (pp. 381–415). Berlin: Springer.

    Google Scholar 

  • Machado, P., Romero, J., Manaris, B., Santos, A., & Cardoso, A. (2003). Power to the critics—a framework for the development of artificial art critics. In IJCAI 2003 workshop on creative systems, Acapulco, Mexico.

    Google Scholar 

  • Machado, P., Romero, J., Santos, A., Cardoso, A., & Manaris, B. (2004). Adaptive critics for evolutionary artists. In R. Günther et al. (Eds.), Lecture notes in computer science: Vol. 3005. Applications of evolutionary computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC, Coimbra, Portugal (pp. 435–444). Berlin: Springer.

    Google Scholar 

  • Manaris, B., Romero, J., Machado, P., Krehbiel, D., Hirzel, T., Pharr, W., & Davis, R. (2005). Zipf’s law, music classification and aesthetics. Computer Music Journal, 29(1), 55–69.

    CrossRef  Google Scholar 

  • Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., & Romero, J. (2007). A corpus-based hybrid approach to music analysis and composition. In Proceedings of the 22nd conference on artificial intelligence (AAAI 07), Vancouver, BC.

    Google Scholar 

  • Marchenko, Y., Chua, T.-S., & Aristarkhova, I. (2005). Analysis and retrieval of paintings using artistic color concepts. In ICME (pp. 1246–1249). New York: IEEE Press.

    Google Scholar 

  • Nadal, M. (2007). Complexity and aesthetic preference for diverse visual stimuli. PhD thesis, Departament de Psicologia, Universitat de les Illes Balears.

    Google Scholar 

  • Neufeld, C., Ross, B., & Ralph, W. (2007). The evolution of artistic filters. In J. Romero & P. Machado (Eds.), The art of artificial evolution. Berlin: Springer.

    Google Scholar 

  • Rigau, J., Feixas, M., & Sbert, M. (2008). Informational dialogue with Van Gogh’s paintings. In Eurographics symposium on computational aesthetics in graphics, visualization and imaging (pp. 115–122).

    Google Scholar 

  • Romero, J., Machado, P., Santos, A., & Cardoso, A. (2003). On the development of critics in evolutionary computation artists. In R. Günther et al. (Eds.), Lecture notes in computer science: Vol. 2611. Applications of evolutionary computing, EvoWorkshops 2003: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC, Essex, UK. Berlin: Springer.

    Google Scholar 

  • Saunders, R. (2001). Curious design agents and artificial creativity—a synthetic approach to the study of creative behaviour. PhD thesis, University of Sydney, Department of Architectural and Design Science Faculty of Architecture, Sydney, Australia.

    Google Scholar 

  • Savarese, J. M., & Miller, R. (1979). Artistic preferences and cognitive-perceptual style. Studies in Art Education, 20, 41–45.

    CrossRef  Google Scholar 

  • Schmidhuber, J. (1997). Low-complexity art. Leonardo, Journal of the International Society for the Arts, Sciences, and Technology, 30(2), 97–103. http://www.jstor.org/stable/1576418.

    Google Scholar 

  • Schmidhuber, J. (1998). Facial beauty and fractal geometry. http://cogprints.org/690/.

  • Schmidhuber, J. (2007). Simple algorithmic principles of discovery, subjective beauty, selective attention, curiosity and creativity. In M. Hutter, R. A. Servedio & E. Takimoto (Eds.), Lecture notes in computer science: Vol. 4754. ALT (pp. 32–33). Berlin: Springer.

    Google Scholar 

  • Sobel, I. (1990). An isotropic 3×3 image gradient operator. In Machine vision for three-dimensional scenes (pp. 376–379).

    Google Scholar 

  • Spector, L., & Alpern, A. (1994). Criticism, culture, and the automatic generation of artworks. In Proceedings of twelfth national conference on artificial intelligence (pp. 3–8). Seattle/Washington: AAAI Press/MIT Press.

    Google Scholar 

  • Spehar, B., Clifford, C. W. G., Newell, N., & Taylor, R. P. (2003). Universal aesthetic of fractals. Computers and Graphics, 27(5), 813–820.

    CrossRef  Google Scholar 

  • Staudek, T. (2002). Exact aesthetics. Object and scene to message. PhD thesis, Faculty of Informatics, Masaryk University of Brno.

    Google Scholar 

  • Staudek, T. (2003). Computer-aided aesthetic evaluation of visual patterns. In ISAMA-BRIDGES conference proceedings, Granada, Spain (pp. 143–149).

    Google Scholar 

  • Svangård, N., & Nordin, P. (2004). Automated aesthetic selection of evolutionary art by distance based classification of genomes and phenomes using the universal similarity metric. In R. Günther et al. (Eds.), Lecture notes in computer science: Vol. 3005. Applications of evolutionary computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC, Coimbra, Portugal (pp. 445–454). Berlin: Springer.

    Google Scholar 

  • Taylor, R. P., Micolich, A. P., & Jonas, D. (1999). Fractal analysis of Pollock’s drip paintings. Nature, 399, 422.

    CrossRef  Google Scholar 

  • Teller, A., & Veloso, M. (1996). PADO: a new learning architecture for object recognition. In K. Ikeuchi & M. Veloso (Eds.), Symbolic visual learning (pp. 81–116). London: Oxford University Press. http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/PADO.ps.Z.

    Google Scholar 

  • Tong, H., Li, M., Zhang, H., He, J., & Zhang, C. (2004). Classification of digital photos taken by photographers or home users. In K. Aizawa, Y. Nakamura & S. Satoh (Eds.), Lecture notes in computer science: Vol. 3331. PCM (1) (pp. 198–205). Berlin: Springer.

    Google Scholar 

  • Tyler, C. W. (Ed.) (2002). Human symmetry perception and its computational analysis. Hillsdale: Erlbaum.

    Google Scholar 

  • Uduehi, J. (1995). A cross-cultural assessment of the maitland graves design judgment test using U.S. and Nigerian students. Visual Arts Research, 21(2), 11–18.

    Google Scholar 

  • Wallraven, C., Cunningham, D. W., & Fleming, R. (2008). Perceptual and computational categories in art. In P. Brown (Ed.), International symposium on computational aesthetics in graphics, visualization, and imaging (pp. 131–138). Aire-la-Ville: Eurographics Association. http://computational-aesthetics.org/2008/.

    Google Scholar 

  • Wallraven, C., Fleming, R. W., Cunningham, D. W., Rigau, J., Feixas, M., & Sbert, M. (2009). Categorizing art: comparing humans and computers. Computers & Graphics, 33(4), 484–495.

    CrossRef  Google Scholar 

  • Wertheimer, M. (1939). Laws of organization in perceptual forms. In W. D. Ellis (Ed.), A source book of gestalt psychology (pp. 71–88). New York: Harcourt Brace.

    Google Scholar 

  • Wong, L.-K., & Low, K.-L. (2009). Saliency-enhanced image aesthetics class prediction. In ICIP (pp. 997–1000). New York: IEEE Press.

    Google Scholar 

  • Yan, Y., & Jin, J. S. (2005). Indexing and retrieving oil paintings using style information. In S. Bres & R. Laurini (Eds.), Lecture notes in computer science: Vol. 3736. VISUAL (pp. 143–152). Berlin: Springer.

    Google Scholar 

  • Zell, A., Mamier, G., Vogt, M., Mache, N., Hübner, R., Döring, S., Herrmann, K.-U., Soyez, T., Schmalzl, M., Sommer, T., et al. (2003). SNNS: Stuttgart neural network simulator user manual, version 4.2 (Technical Report 3/92). University of Stuttgart, Stuttgart.

    Google Scholar 

  • Zipf, G. K. (1949). Human behaviour and the principle of least effort: an introduction to human ecology. Reading: Addison-Wesley.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments, suggestions and criticisms. This research is partially funded by: the Spanish Ministry for Science and Technology, research project TIN2008-06562/TIN; the Portuguese Foundation for Science and Technology, research project PTDC/EIA-EIA/115667/2009; Xunta de Galicia, research project XUGA-PGIDIT10TIC105008-PR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romero, J., Machado, P., Carballal, A., Correia, J. (2012). Computing Aesthetics with Image Judgement Systems. In: McCormack, J., d’Inverno, M. (eds) Computers and Creativity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31727-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31727-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31726-2

  • Online ISBN: 978-3-642-31727-9

  • eBook Packages: Computer ScienceComputer Science (R0)