Aguilar, C., & Lipson, H. (2008). A robotic system for interpreting images into painted artwork. In C. Soddu (Ed.), International conference on generative art (Vol. 11). Generative Design Lab, Milan Polytechnic.
Google Scholar
Aldiss, B. (2002). The mechanical turk—the true story of the chess-playing machine that changed the world. TLS-the Times Literary Supplement, 5170, 33.
Google Scholar
Alsing, R. (2008). Genetic programming: evolution of Mona Lisa. http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/. Accessed 7/21/2011.
Arnheim, R. (1974). Art and visual perception: a psychology of the creative eye (new, expanded and revised ed.) Berkeley: University of California Press.
Google Scholar
Atiyeh, B., & Hayek, S. (2008). Numeric expression of aesthetics and beauty. Aesthetic Plastic Surgery, 32(2), 209–216.
CrossRef
Google Scholar
Axelsson, O. (2007). Individual differences in preferences to photographs. Psychology of Aesthetics, Creativity, and the Arts, 1(2), 61–72.
CrossRef
Google Scholar
Baluja, S., Pomerleau, D., & Jochem, T. (1994). Towards automated artificial evolution for computer-generated images. Connection Science, 6(1), 325–354.
CrossRef
Google Scholar
Bense, M. (1965). Aesthetica; Einfhrung in die neue Aesthetik. Baden-Baden: Agis-Verlag.
Google Scholar
Bentley, P., & Corne, D. (2002). An introduction to creative evolutionary systems. In P. Bentley & D. Corne (Eds.), Creative evolutionary systems (pp. 1–75). San Francisco/San Diego: Morgan Kaufmann/Academic Press.
CrossRef
Google Scholar
Berlyne, D. E. (1960). Conflict, arousal, and curiosity. New York: McGraw-Hill.
CrossRef
Google Scholar
Berlyne, D. E. (1971). Aesthetics and psychobiology. New York: Appleton-Century-Crofts.
Google Scholar
Birkhoff, G. D. (1933). Aesthetic measure. Cambridge: Harvard University Press.
MATH
Google Scholar
Boselie, F., & Leeuwenberg, E. (1985). Birkhoff revisited: beauty as a function of effect and means. The American Journal of Psychology, 98(1), 1–39.
CrossRef
Google Scholar
Carroll, N. (1999). Philosophy of art: a contemporary introduction, Routledge contemporary introductions to philosophy. London: Routledge.
Google Scholar
Casti, J. L. (1994). Complexification: explaining a paradoxical world through the science of surprise (1st ed.). New York: HarperCollins.
Google Scholar
Chaitin, G. J. (1966). On the length of programs for computing finite binary sequences. Journal of the ACM, 13(4), 547–569.
MathSciNet
MATH
CrossRef
Google Scholar
Ciesielski, V. (2007). Evolution of animated photomosaics. In Lecture notes in computer science (vol. 4448, pp. 498–507).
Google Scholar
Collier, G. L. (2002). Why does music express only some emotions? A test of a philosophical theory. Empirical Studies of the Arts, 20(1), 21–31.
CrossRef
Google Scholar
Cupchik, G. C. (2007). A critical reflection on Arnheim’s gestalt theory of aesthetics. Psychology of Aesthetics, Creativity, and the Arts, 1(1), 16–24.
CrossRef
Google Scholar
Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2006). Studying aesthetics in photographic images using a computational approach. In Proceedings: Vol. 3953. ECCV 2006 (Pt. 3, pp. 288–301).
Google Scholar
Datta, R., Li, J., & Wang, J. Z. (2007). Learning the consensus on visual quality for next-generation image management. In Proceedings of the ACM multimedia conference (pp. 533–536). New York: ACM.
Google Scholar
Davis, T., & Rebelo, P. (2007). Environments for sonic ecologies. In Applications of evolutionary computing (pp. 508–516). Berlin: Springer.
Google Scholar
De Prisco, R., & Zaccagnino, R. (2009). An evolutionary music composer algorithm for bass harmonization. In Applications of evolutionary computing (Vol. 5484, pp. 567–572). Berlin: Springer.
CrossRef
Google Scholar
Dorin, A. (2005). Enriching aesthetics with artificial life. In A. Adamatzky & M. Komosinski (Eds.), Artificial life models in software (pp. 415–431). London: Springer. Chap. 14.
Google Scholar
Draves, S. (2005). The electric sheep screen-saver: A case study in aesthetic evolution. In Lecture notes in computer science: Vol. 3449. Evo workshops (pp. 458–467).
Google Scholar
Dutton, D. (2009). The art instinct: beauty, pleasure, and human evolution (1st U.S. ed.). New York: Bloomsbury Press.
Google Scholar
Elzenga, R. N., & Pontecorvo, M. S. (1999). Arties: meta-design as evolving colonies of artistic agents. Generative Design Lab.
Google Scholar
De Felice, F., & Fabio Abbattista, F. S. (2002). Genorchestra: an interactive evolutionary agent for musical composition. In C. Soddu (Ed.), International conference on generative art (Vol. 5). Generative Design Lab, Milan Polytechnic.
Google Scholar
Feldman, D. P., & Crutchfield, J. (1998). A survey of complexity measures. Santa Fe Institute.
Google Scholar
Ficici, S., & Pollack, J. (1998). Challenges in co-evolutionary learning; arms-race dynamics, open-endedness, and mediocre stable states. In C. Adami (Ed.), Artificial life VI: proceedings of the sixth international conference on artificial life (pp. 238–247). Cambridge: MIT Press.
Google Scholar
Fogel, L. J. (1999). Intelligence through simulated evolution: forty years of evolutionary programming. Wiley series on intelligent systems. New York: Wiley.
MATH
Google Scholar
Fornari, J. (2007). Creating soundscapes using evolutionary spatial control. In Lecture notes in computer science (Vol. 4448, pp. 517–526).
Google Scholar
Galanter, P. (2010). The problem with evolutionary art is. In C. DiChio, A. Brabazon, G. A. DiCaro, M. Ebner, M. Farooq, A. Fink, J. Grahl, G. Greenfield, P. Machado, M. O’Neill, E. Tarantino, & N. Urquhart (Eds.), Lecture notes in computer science: Vol. 6025. Applications of evolutionary computation, pt. II, proceedings (pp. 321–330). Berlin: Springer.
CrossRef
Google Scholar
Gartland-Jones, A. (2002). Can a genetic algorithm think like a composer? In C. Soddu (Ed.), International conference on generative art (Vol. 5). Generative Design Lab, Milan Polytechnic.
Google Scholar
Gedeon, T. (2008). Neural network for modeling esthetic selection. In Lecture notes in computer science (Vol. 4985(2), pp. 666–674).
Google Scholar
Gell-Mann, M. (1995). What is complexity? Complexity, 1(1), 16–19.
MathSciNet
MATH
Google Scholar
Glette, K., Torresen, J., & Yasunaga, M. (2007). An online EHW pattern recognition system applied to face image recognition. In Applications of evolutionary computing (pp. 271–280). Berlin: Springer.
Google Scholar
Greenfeld, G. R. (2003). Evolving aesthetic images using multiobjective optimization. In CEC: 2003 congress on evolutionary computation (pp. 1903–1909).
CrossRef
Google Scholar
Greenfield, G. (2005a). Evolutionary methods for ant colony paintings. In Lecture notes in computer science: Vol. 3449. Evo workshops (pp. 478–487).
Google Scholar
Greenfield, G. (2005b). On the origins of the term computational aesthetics. In Computational aesthetics 2005: Eurographics workshop on computational aesthetics in graphics, visualization and imaging, Girona, Spain, 18–20 May, 2005. Eurographics.
Google Scholar
Greenfield, G. (2008a). Evolved diffusion limited aggregation compositions. In Applications of evolutionary computing (pp. 402–411). New York: Springer.
CrossRef
Google Scholar
Greenfield, G. R. (2004). The void series—generative art using regulatory genes. In C. Soddu (Ed.), International conference on generative art (Vol. 7). Generative Design Lab, Milan Polytechnic.
Google Scholar
Greenfield, G. R. (2008b). Co-evolutionary methods in evolutionary art. In J. Romero & P. Machado (Eds.), Natural computing series. The art of artificial evolution (pp. 357–380). Berlin: Springer.
CrossRef
Google Scholar
Hawkins, J., & Blakeslee, S. (2004). On intelligence (1st ed.). New York: Times Books.
Google Scholar
Hazan, A., Ramirez, R., Maestre, E., Perez, A., & Pertusa, A. (2006). Modelling expressive performance: a regression tree approach based on strongly typed genetic programming. In Applications of evolutionary computing (pp. 676–687). Berlin: Springer.
CrossRef
Google Scholar
Helbing, D., & Molnar, P. (1995). Social force model for pedestrian dynamics. Physical Review, E(51), 4282–4286.
Google Scholar
Helbing, D., & Molnar, P. (1997). Self-organization phenomena in pedestrian crowds. In F. Schweitzer (Ed.), Self-organization of complex structures: from individual to collective dynamics (pp. 569–577). London: Gordon and Breach.
Google Scholar
Hoenig, F. (2005). Defining computational aesthetics. In L. Neumann, M. Sbert & B. Gooch (Eds.), Computational aesthetics in graphics, visualization and imaging, Girona, Spain.
Google Scholar
Holger, H. (1997). Why a special issue on the golden section hypothesis? An introduction. Empirical Studies of the Arts, 15.
Google Scholar
Hönn, M., & Göz, G. (2007). The ideal of facial beauty: a review. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopdie, 68(1), 6–16.
CrossRef
Google Scholar
Hornby, G. S., & Pollack, J. B. (2001). The advantages of generative grammatical encodings for physical design. In Proceedings of the 2001 congress on evolutionary computation (Vol. 601, pp. 600–607).
Google Scholar
Jaskowski, W. (2007). Learning and recognition of hand-drawn shapes using generative genetic programming. In Lecture notes in computer science (Vol. 4448, pp. 281–290).
Google Scholar
Khalifa, Y., & Foster, R. (2006). A two-stage autonomous evolutionary music composer. In Lecture notes in computer science: Vol. 3907. Evo workshops (pp. 717–721).
Google Scholar
Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems in Information Transmission, 1, 1–7.
MathSciNet
Google Scholar
Komar, V., Melamid, A., & Wypijewski, J. (1997). Painting by numbers: Komar and Melamid’s scientific guide to art (1st ed.). New York: Farrar Straus Giroux.
Google Scholar
Konečni, V. J. (1978). Daniel E. Berlyne: 1924–1976. The American Journal of Psychology, 91(1), 133–137.
Google Scholar
Koob, A. (2009). The root of thought: what do glial cells do? http://www.scientificamerican.com/article.cfm?id=the-root-of-thought-what. Accessed 11/29/09.
Koza, J. R., Bennett, F. H. I., Andre, D., & Keane, M. A. (2002). Genetic programming: biologically inspired computation that exhibits creativity in producing human-competitive results. In P. Bentley & D. Corne (Eds.), Creative evolutionary systems (pp. 275–298). San Francisco/San Diego: Morgan Kaufmann/Academic Press.
CrossRef
Google Scholar
Kozbelt, A. (2006). Dynamic evaluation of Matisse’s 1935 large reclining nude. Empirical Studies of the Arts, 24(2), 119–137.
CrossRef
Google Scholar
Law, E., & Phon-Amnuaisuk, S. (2008). Towards music fitness evaluation with the hierarchical SOM. In Applications of evolutionary computing (pp. 443–452). Berlin: Springer.
CrossRef
Google Scholar
Li, Y.-F., & Zhang, X.-R. (2004). Quantitative and rational research for the sense quantum—research of the order factors for color harmony aesthetic. Journal of Shanghai University (English Edition), 8(2), 203–207.
CrossRef
Google Scholar
Livio, M. (2003). The golden ratio: the story of phi, the world’s most astonishing number (1st ed.). New York: Broadway Books.
Google Scholar
Machado, P. (1998) Computing aesthetics. In Lecture notes in artificial intelligence: Vol. 1515.
Google Scholar
Machado, P., & Cardoso, A. (2002). All the truth about NEvAr. Applied Intelligence, 16(2), 101–118.
MATH
CrossRef
Google Scholar
Machado, P., & Cardoso, A. (2003). NEvAr system overview. Generative design lab, Milan Polytechnic.
Google Scholar
Machado, P., Romero, J., Cardoso, A., & Santos, A. (2005). Partially interactive evolutionary artists. New Generation Computing, 23(2), 143–155.
CrossRef
Google Scholar
Machado, P., Romero, J., & Manaris, B. (2008). Experiments in computational aesthetics—an iterative approach to stylistic change in evolutionary art. In J. Romero & P. Machado (Eds.), The art of artificial evolution: a handbook on evolutionary art and music (pp. 311–332). Berlin: Springer.
Google Scholar
Machado, P., Romero, J., Santos, A., Cardoso, A., & Pazos, A. (2007). On the development of evolutionary artificial artists. Computers and Graphics, 31(6), 818–826.
CrossRef
Google Scholar
Machado, P., Romero, J., Santos, M. L., Cardoso, A., & Manaris, B. (2004). Adaptive critics for evolutionary artists. In Lecture notes in computer science. Applications of evolutionary computing (pp. 437–446). Berlin: Springer.
CrossRef
Google Scholar
Machwe, A. T. (2007). Towards an interactive, generative design system: integrating a ‘build and evolve’ approach with machine learning for complex freeform design. In Lecture notes in computer science (Vol. 4448, pp. 449–458).
Google Scholar
Magnus, C. (2006). Evolutionary musique concrete. In F. Rothlauf & J. Branke (Eds.), Applications of evolutionary computing, EvoWorkshops 2006 (pp. 688–695). Berlin: Springer.
Google Scholar
Manaris, B., Machado, P., McCauley, C., Romero, J., & Krehbiel, D. (2005). Developing fitness functions for pleasant music: Zipf’s law and interactive evolution systems. In Lecture notes in computer science: Vol. 3449. Evo workshops (pp. 498–507).
Google Scholar
Manaris, B., Vaughan, D., Wagner, C., Romero, J., & Davis, R. B. (2003). Evolutionary music and the Zipf-Mandelbrot law: developing fitness functions for pleasant music. Applications of Evolutionary Computing, 2611, 522–534.
CrossRef
Google Scholar
Martindale, C. (1981). Cognition and consciousness. The Dorsey series in psychology. Homewood: Dorsey Press.
Google Scholar
Martindale, C. (1984). The pleasures of thought: a theory of cognitive hedonics. Journal of Mind and Behavior, 5(1), 49–80.
MathSciNet
Google Scholar
Martindale, C. (1988a). Cognition, psychobiology, and aesthetics. In F. H. Farley & R. W. Neperud (Eds.), The foundations of aesthetics, art, and art education (pp. 7–42). New York: Praeger Publishers.
Google Scholar
Martindale, C. (1988b). Relationship of preference judgements to typicality, novelty, and mere exposure. Empirical Studies of the Arts, 6(1), 79–96.
CrossRef
Google Scholar
Martindale, C. (1991). Cognitive psychology: a neural-network approach. Pacific Grove: Brooks/Cole Publishing Company.
Google Scholar
Martindale, C. (2007). A neural-network theory of beauty. In C. Martindale, P. Locher & V. Petrov (Eds.), Evolutionary and neurocognitive approaches to aesthetics, creativity, and the arts (pp. 181–194). Amityville: Baywood.
Google Scholar
Martindale, C., Moore, K., & Anderson, K. (2005). The effect of extraneous stimulation on aesthetic preference. Empirical Studies of the Arts, 23(2), 83–91.
CrossRef
Google Scholar
Martindale, C., Moore, K., & Borkum, J. (1990). Aesthetic preference: anomalous findings for Berlyne’s psychobiological theory. The American Journal of Psychology, 103(1), 53–80.
CrossRef
Google Scholar
Maxwell, J. B., Pasquier, P., & Eigenfeldt, A. (2009). Hierarchical sequential memory for music: a cognitive model. In International society for music information retrieval.
Google Scholar
McCormack, J. (2005) Open problems in evolutionary music and art. In Lecture notes in computer science: Vol. 3449. Evo workshops (pp. 428–436).
Google Scholar
McCormack, J. (2008). Facing the future: evolutionary possibilities for human-machine creativity. In J. Romero & P. Machado (Eds.), The art of artificial evolution: a handbook on evolutionary art and music (pp. 417–451). Berlin: Springer.
Google Scholar
McCormack, J., & Bown, O. (2009) Life’s what you make: Niche construction and evolutionary art. In Lecture notes in computer science: Vol. 5484. Evo workshops (pp. 528–537).
Google Scholar
McDermott, J., Griffith, N. J. L., & O’Neill, M. (2005). Toward user-directed evolution of sound synthesis parameters. In Lecture notes in computer science: Vol. 3449. Evo workshops (pp. 517–526).
Google Scholar
Minsky, M. L., & Papert, S. (1969). Perceptrons; an introduction to computational geometry. Cambridge: MIT Press.
MATH
Google Scholar
Mitchell, T. J., & Pipe, A. G. (2005). Convergence synthesis of dynamic frequency modulation tones using an evolution strategy. In Applications on evolutionary computing (pp. 533–538). Berlin: Springer.
Google Scholar
Moles, A. A. (1966). Information theory and esthetic perception. Urbana: University of Illinois Press.
Google Scholar
Monmarché, N., Aupetit, S., Bordeau, V., Slimane, M., & Venturini, G. (2003). Interactive evolution of ant paintings. In B. McKay et al. (Eds.), Congress on evolutionary computation (Vol. 2, pp. 1376–1383). New York: IEEE Press.
Google Scholar
Mori, T., Endou, Y., & Nakayama, A. (1996). Fractal analysis and aesthetic evaluation of geometrically overlapping patterns. Textile Research Journal, 66(9), 581–586.
CrossRef
Google Scholar
Neufeld, C., Ross, B. J., & Ralph, W. (2008). The evolution of artistic filters. In J. Romero & P. Machado (Eds.), The art of artificial evolution: a handbook on evolutionary art and music (pp. 335–356). Berlin: Springer.
Google Scholar
North, A. C., & Hargreaves, D. J. (2000). Collative variables versus prototypically. Empirical Studies of the Arts, 18(1), 13–17.
CrossRef
Google Scholar
Numenta (2008). Advanced nupic programming. http://www.numenta.com/for-developers/software/pdf/nupic_prog_guide.pdf. Accessed 16/04/10.
Oelmann, H., & Laeng, B. (2009). The emotional meaning of harmonic intervals. Cognitive Processing, 10(2), 113–131.
CrossRef
Google Scholar
Parker, S., Bascom, J., Rabinovitz, B., & Zellner, D. (2008). Positive and negative hedonic contrast with musical stimuli. Psychology of Aesthetics, Creativity, and the Arts, 2(3), 171–174.
CrossRef
Google Scholar
Peitgen, H.-O., Jürgens, H., & Saupe, D. (1992). Chaos and fractals: new frontiers of science. New York: Springer.
Google Scholar
Phon-Amnuaisuk, S. (2007). Evolving music generation with SOM-fitness genetic programming. In Lecture notes in computer science (Vol. 4448, pp. 557–566).
Google Scholar
Pinker, S. (1994). The language instinct (1st ed.). New York: Morrow.
Google Scholar
Poon, J., & Maher, M. L. (1997). Co-evolution and emergence in design. Artificial Intelligence in Engineering, 11(3), 319–327.
CrossRef
Google Scholar
Reddin, J., McDermott, J., & O’Neill, M. (2009). Elevated pitch: automated grammatical evolution of short compositions. In Lecture notes in computer science: Vol. 5484. EvoWorkshops 2009 (pp. 579–584).
Google Scholar
Resnick, M. (1994). Complex adaptive systems. Turtles, termites, and traffic jams: explorations in massively parallel microworlds. Cambridge: MIT Press.
Google Scholar
Reynolds, C. (1987). Flocks, herds, and schools: a distributed behavioural model. Computer Graphics, 21(4), 25–34.
CrossRef
Google Scholar
Romero, J., Machado, P., & Santos, M. L. (2003). Artificial music critics. Generative Design Lab, Milan Polytechnic.
Google Scholar
Rosenblatt, F. (1962). Principles of neurodynamics; perceptrons and the theory of brain mechanisms. Washington: Spartan Books.
MATH
Google Scholar
Ross, A. (1995). Poll stars. ArtForum, 33(5), 72–77.
Google Scholar
Ross, B. J., & Zhu, H. (2004). Procedural texture evolution using multi-objective optimization. New Generation Computing, 22(3), 271–293.
MATH
CrossRef
Google Scholar
Saunders, R. (2002). Curious design agents and artificial creativity. PhD thesis, University of Sydney.
Google Scholar
Saunders, R., & Gero, J. S. (2004). Curious agents and situated design evaluations. AI Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing, 18(2), 153–161.
Google Scholar
Scha, R., & Bod, R. (1993). Computationele esthetica. Informatie en Informatiebeleid, 11(1), 54–63.
Google Scholar
Schimmel, K., & Forster, J. (2008). How temporal distance changes novices’ attitudes towards unconventional arts. Psychology of Aesthetics, Creativity, and the Arts, 2(1), 53–60.
CrossRef
Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423.
MathSciNet
MATH
Google Scholar
Sims, K. (1991). Artificial evolution for computer-graphics. Siggraph ’91 Proceedings
25, 319–328.
CrossRef
Google Scholar
Sims, K. (1994). Evolving virtual creatures. Siggraph ’94 Proceedings, 28, 15–22.
CrossRef
Google Scholar
Sims, K. (1997). Galapagos interactive exhibit. http://www.karlsims.com/galapagos/index.html. Accessed 11/16/2010.
Skov, M., & Vartanian, O. (2009a). Introduction—what is neuroaesthetics? In M. Skov & O. Vartanian (Eds.), Neuroaesthetics—foundations and frontiers in aesthetics (pp. iv, 302 p.). Amityville: Baywood.
Google Scholar
Skov, M., & Vartanian, O. (2009b). Neuroaesthetics, foundations and frontiers in aesthetics, Amityville: Baywood.
Google Scholar
Solomonoff, R. J. (1964). A formal theory of inductive inference, part I and part II. Information and Control, 7, 1–22. 224–254.
MathSciNet
MATH
CrossRef
Google Scholar
Standage, T. (2002). The mechanical turk: the true story of the chess-playing machine that fooled the world. London: Allen Lane.
Google Scholar
Staudek, T. (1999). On Birkhoff’s aesthetic measure of vases (Vol. 2009). Faculty of Informatics, Masaryk University.
Google Scholar
Stewart, M. (2008). Launching the imagination: a comprehensive guide to basic design (3rd ed.). Boston: McGraw-Hill Higher Education.
Google Scholar
Sullivan, L. H. (1896). The tall office building artistically considered. Lippincott’s Magazine, 57, 403–409.
Google Scholar
Takagi, H. (2001). Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE, 89(9), 1275–1296.
CrossRef
Google Scholar
Taylor, R. P. (2006). Chaos, fractals, nature: a new look at Jackson Pollock. Eugene: Fractals Research.
Google Scholar
Todd, P. M. (1989). A connectionist approach to algorithmic composition. Computer Music Journal, 13(4), 27–43.
CrossRef
Google Scholar
Todd, P., & Werner, G. (1998). Frankensteinian methods for evolutionary music composition. In N. Griffith & P. Todd (Eds.), Musical networks: parallel distributed perception and performance. Cambridge: MIT Press/Bradford Books.
Google Scholar
Todd, S., & Latham, W. (1992). Evolutionary art and computers. London: Academic Press.
MATH
Google Scholar
Tsai, H.-C., Hung, C.-Y., & Hung, F.-K. (2007). Automatic product color design using genetic searching. In Computer-aided architectural design futures (CAADFutures) 2007 (pp. 513–524). Berlin: Springer.
CrossRef
Google Scholar
Tufte, G., & Gangvik, E. (2008). Transformer #13: exploration and adaptation of evolution expressed in a dynamic sculpture. In Applications of evolutionary computing (pp. 509–514). Berlin: Springer.
CrossRef
Google Scholar
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.
MathSciNet
CrossRef
Google Scholar
Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical transactions—Royal Society. Biological Sciences, 237(641), 37–72.
CrossRef
Google Scholar
Urbano, P. (2006) Consensual paintings. In Lecture notes in computer science: Vol. 3907. Evo workshops (pp. 622–632).
Google Scholar
Verstegen, I. (2007). Rudolf Arnheim’s contribution to gestalt psychology. Psychology of Aesthetics, Creativity, and the Arts, 1(1), 8–15.
CrossRef
Google Scholar
Von Neumann, J., & Burks, A. W. (1966). Theory of self-reproducing automata. Urbana: University of Illinois Press.
Google Scholar
Voss, R. F., & Clarke, J. (1975). 1/F-noise in music and speech. Nature, 258(5533), 317–318.
CrossRef
Google Scholar
Watanabe, S. (2009). Pigeons can discriminate “good” and “bad” paintings by children. Animal Cognition, 13(1).
Google Scholar
Weinberg, G., Godfrey, M., Rae, A., & Rhoads, J. (2009). A real-time genetic algorithm in human-robot musical improvisation. In Computer music modeling and retrieval. Sense of sounds (pp. 351–359). Berlin: Springer.
Google Scholar
Wertheimer, M. (2007). Rudolf Arnheim: an elegant artistic gestalt. Psychology of Aesthetics, Creativity, and the Arts, 1(1), 6–7.
CrossRef
Google Scholar
Whitelaw, M. (2003). Morphogenetics: generative processes in the work of driessens and verstappen. Digital Creativity, 14(1), 43–53.
CrossRef
Google Scholar
Whitfield, T. W. A. (2000). Beyond prototypicality: toward a categorical-motivation model of aesthetics. Empirical Studies of the Arts, 18(1), 1–11.
CrossRef
Google Scholar
Wilson, D. J. (1939). An experimental investigation of Birkhoff’s aesthetic measure. The Journal of Abnormal and Social Psychology, 34(3), 390–394.
CrossRef
Google Scholar
Wu, Y.-F., & Chien, S.-F. (2005). Enemy character design in computer games using generative approach. Generative Design Lab, Milan Polytechnic.
Google Scholar
Yao, X., & Higuchi, T. (1997). Promises and challenges of evolvable hardware. In T. Higuchi (Ed.), Evolvable systems: from biology to hardware (Vol. 1259, pp. 55–78). Berlin: Springer.
CrossRef
Google Scholar
Yee-King, M. (2007). An automated music improviser using a genetic algorithm driven synthesis engine. In M. Giacobini (Ed.), Proceedings of the 2007 EvoWorkshops (pp. 567–576). Berlin: Springer.
Google Scholar
Yuan, J. (2008). Large population size IGAs with individuals’ fitness not assigned by user. In Lecture notes in computer science (Vol. 5227, pp. 267–274).
Google Scholar
Zipf, G. K. (1949). Human behavior and the principle of least effort: an introduction to human ecology. Cambridge: Addison-Wesley.
Google Scholar