Randomized Game Semantics for Semi-fuzzy Quantifiers

  • Christian G. Fermüller
  • Christoph Roschger
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)


We first show that randomized payoff in classical evaluation games leads to so-called weak Łukasiewicz logic. A further step of generalization results in Giles’s game semantics for full Łukasiewicz logic. Finally we extend the concept of randomization to characterize a family of semi-fuzzy quantifiers embedded into Łukasiewicz logic.


Fuzzy Logic Limited Liability Truth Function Domain Element Dialogue Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker, C.: The dynamics of vagueness. Linguistics & Philosophy 25(1), 1–36 (2002)CrossRefGoogle Scholar
  2. 2.
    Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic. College Publications (2011)Google Scholar
  3. 3.
    Cintula, P., Majer, O.: Towards evaluation games for fuzzy logics. In: Majer, O., Pietarinen, A.-V., Tulenheimo, T. (eds.) Games: Unifying Logic, Language, and Philosophy, pp. 117–138. Springer (2009)Google Scholar
  4. 4.
    Esteva, F., Godo, L., Hájek, P., Navara, M.: Residuated fuzzy logics with an involutive negation. Archive for Mathematical Logic 39, 103–124 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fermüller, C.G.: Revisiting Giles’s game. In: Majer, O., Pietarinen, A.-V., Tulenheimo, T. (eds.) Games: Unifying Logic, Language, and Philosophy. Logic, Epistemology, and the Unity of Science, pp. 209–227. Springer (2009)Google Scholar
  6. 6.
    Fermüller, C.G., Metcalfe, G.: Giles’s game and the proof theory of łukasiewicz logic. Studia Logica 92(1), 27–61 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fermüller, C.G., Roschger, C.: From games to truth functions: A generalization of Giles’s gameGoogle Scholar
  8. 8.
    Giles, R.: A non-classical logic for physics. Studia Logica 33(4), 397–415 (1974)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Giles, R.: A non-classical logic for physics. In: Wojcicki, R., Malinkowski, G. (eds.) Selected Papers on Łukasiewicz Sentential Calculi, pp. 13–51. Polish Academy of Sciences (1977)Google Scholar
  10. 10.
    Glöckner, I.: Fuzzy quantifiers: a computational theory. STUDFUZZ, vol. 193. Springer (2006)Google Scholar
  11. 11.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers (2001)Google Scholar
  12. 12.
    Hájek, P.: What is mathematical fuzzy logic. Fuzzy Sets and Systems 157(157), 597–603 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hintikka, J.: Logic, language-games and information: Kantian themes in the philosophy of logic. Clarendon Press, Oxford (1973)zbMATHGoogle Scholar
  14. 14.
    Lorenzen, P.: Logik und Agon. In: Atti Congr. Internaz. di Filosofia, pp. 187–194. Sansoni (1960)Google Scholar
  15. 15.
    Peters, S., Westerståhl, D.: Quantifiers in language and logic. Oxford University Press, USA (2006)Google Scholar
  16. 16.
    Shapiro, S.: Vagueness in context. Oxford University Press, USA (2006)CrossRefGoogle Scholar
  17. 17.
    Solt, S.: Vagueness in quantity: Two case studies from a linguistic perspective. In: Cintula, P., et al. (eds.) Reasoning under Vagueness - Logical, Philosophical and Linguistic Perspectives. College Publications (2011)Google Scholar
  18. 18.
    van Benthem, J.: Questions about quantifiers. Journal of Symbolic Logic 49(2), 443–466 (1984)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian G. Fermüller
    • 1
  • Christoph Roschger
    • 1
  1. 1.Theory and Logic Group 185.2Vienna University of TechnologyViennaAustria

Personalised recommendations