General Information for the Union of Not Disjoint Fuzzy Sets

  • Doretta Vivona
  • Maria Divari
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)


The aim of this paper is to propose a class of general information for the union of not disjoint sets.


Functional Equation General Information Formal Language Aggregation Operator Conditional Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aczél, J.: Functional equations and their applications. Academic Press (1966)Google Scholar
  2. 2.
    Benvenuti, P., Vivona, D., Divari, M.: A General Information for Fuzzy Sets. In: Bouchon-Meunier, B., Zadeh, L.A., Yager, R.R. (eds.) IPMU 1990. LNCS, vol. 521, pp. 307–316. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  3. 3.
    Benvenuti, P., Vivona, D.: Comonotone aggregation operators. Rend. Mat. VII, 323–336 (2000)MathSciNetGoogle Scholar
  4. 4.
    Benvenuti, P., Vivona, D., Divari, M.: Aggregation operators and associated fuzzy measures. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 2, 197–204 (2001)MathSciNetGoogle Scholar
  5. 5.
    Forte, B.: Measures of information: the general axiomatic theory. R.A.I.R.O, 63–90 (1969)Google Scholar
  6. 6.
    Kampé De Fériet, J., Benvenuti, P.: Sur une classe d’informations. C. R. Acad. Sc. Paris 269A, 97–101 (1969)Google Scholar
  7. 7.
    Kampé De Fériet, J., Forte, B.: Information et Probabilité. C. R. Acad. Sc. Paris 265, 110–114, 142–146, 350–353 (1967)zbMATHGoogle Scholar
  8. 8.
    Vivona, D., Divari, M.: A collector for information without probability in a fuzzy setting. Kybernetika 41, 389–396 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Vivona, D., Divari, M.: Entropies of fuzzy compositive partitions. In: Proc. IPMU 2006 Congress, pp. 1811–1815 (2005)Google Scholar
  10. 10.
    Vivona, D., Divari, M.: Fuzzy Measures: Collectors of Entropies. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 285–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Vivona, D., Divari, M.: Conditional entropy for the union of fuzzy and crisp partitions. In: Proc. EUSFLAT 2007, pp. 169–173 (2007)Google Scholar
  12. 12.
    Vivona, D., Divari, M.: Measures of local entropies for compositive fuzzy partitions. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 19(4), 717–728 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Zadeh, L.A.: Fuzzy sets. Inf. and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Doretta Vivona
    • 1
  • Maria Divari
    • 2
  1. 1.Dip.SBAISapienza Universitá di RomaRomaItaly
  2. 2.Sapienza UniversitáRomaItaly

Personalised recommendations