Advertisement

Handling Interventions with Uncertain Consequences in Belief Causal Networks

  • Imen Boukhris
  • Zied Elouedi
  • Salem Benferhat
Part of the Communications in Computer and Information Science book series (CCIS, volume 299)

Abstract

Interventions are tools used to distinguish between mere correlations and causal relationships. These standard interventions are assumed to have certain consequences, i.e. they succeed to put their target into one specific state. In this paper, we propose to handle interventions with uncertain consequences. The uncertainty is formalized with the belief function theory which is known to be a general framework allowing the representation of several kinds of imperfect data. Graphically, we investigate the use of belief function causal networks to model the results of passively observed events and also the results of interventions with uncertain consequences. To compute the effect of these interventions, altered structures namely, belief mutilated graphs and belief augmented graphs with uncertain effects are used.

Keywords

Belief Function Belief Change Causal Network Manipulate Variable Focal Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben Yaghlane, B., Mellouli, K.: Inference in directed evidential networks based on the transferable belief model. Int. J. Approx. Reasoning 48(2), 399–418 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benferhat, S., Smaoui, S.: Possibilistic causal networks for handling interventions: A new propagation algorithm. In: AAAI, pp. 373–378 (2007)Google Scholar
  3. 3.
    Boukhris, I., Benferhat, S., Elouedi, Z.: Representing Belief Function Knowledge with Graphical Models. In: Xiong, H., Lee, W.B. (eds.) KSEM 2011. LNCS, vol. 7091, pp. 233–245. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Boukhris, I., Elouedi, Z., Benferhat, S.: Modeling interventions using belief causal networks. In: FLAIRS 2011, pp. 602–607 (2011)Google Scholar
  5. 5.
    Chan, H., Darwiche, A.: On the revision of probabilistic beliefs using uncertain evidence. Artif. Intell. 163(1), 67–90 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press (2009)Google Scholar
  7. 7.
    Dubois, D., Prade, H.: On the unicity of Dempster rule of combination. Int. J. Intell. System 1, 133–142 (1986)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dubois, D.: Information Fusion and Revision in Qualitative and Quantitative Settings. In: Liu, W. (ed.) ECSQARU 2011. LNCS, vol. 6717, pp. 1–18. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Eberhardt, F., Scheines, R.: Interventions and causal inference. Philos. Sci. 74, 981–995 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Halpern, J.Y.: Reasoning about Uncertainty. The MIT Press (2003)Google Scholar
  11. 11.
    Ichihashi, H., Tanaka, H.: Jeffrey-like rules of conditioning for the Dempster-Shafer theory of evidence. Inter. J. Approx. Reasoning 3, 143–156 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jeffrey, R.C.: The Logic of Decision, 2nd edn. Univ. Chicago Press, Chicago (1983)Google Scholar
  13. 13.
    Korb, K.B., Hope, L.R., Nicholson, A.E., Axnick, K.: Varieties of Causal Intervention. In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 322–331. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Ma, J., Liu, W., Dubois, D., Prade, H.: Bridging jeffrey’s rule, agm revision and dempster conditioning in the theory of evidence. Int. J. Art. Intell. Tools 20(4), 691–720 (2011)CrossRefGoogle Scholar
  15. 15.
    Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann Publishers (1988)Google Scholar
  16. 16.
    Pearl, J.: Causality: Models, Reasonning and Inference. Cambridge University Press (2000)Google Scholar
  17. 17.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton (1976)zbMATHGoogle Scholar
  18. 18.
    Shafer, G.: Jeffrey’s rule of conditioning. Philisophy of Sciences 48, 337–362 (1981)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Smets, P.: The combination of evidence in the transferable belief model. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 447–458 (1990)CrossRefGoogle Scholar
  20. 20.
    Smets, P.: About updating. In: UAI 1991, pp. 378–385 (1991)Google Scholar
  21. 21.
    Smets, P.: Jeffrey’s rule of conditioning generalized to belief functions. In: UAI 1993, pp. 500–505 (1993)Google Scholar
  22. 22.
    Teng, C.M.: Applications of causal inference. In: ISAIM (2012)Google Scholar
  23. 23.
    Xu, H., Smets, P.: Evidential reasoning with conditional belief functions. In: UAI 1994, pp. 598–606 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Imen Boukhris
    • 1
    • 2
  • Zied Elouedi
    • 1
  • Salem Benferhat
    • 2
  1. 1.LARODECUniversité de Tunis, ISG de TunisTunisia
  2. 2.Faculté Jean PerrinCRIL, Université d’ArtoisFrance

Personalised recommendations