An Imprecise Probability Approach to Joint Extensions of Stochastic and Interval Orderings

  • Inés Couso
  • Didier Dubois
Part of the Communications in Computer and Information Science book series (CCIS, volume 299)


This paper deals with methods for ranking uncertain quantities in the setting of imprecise probabilities. It is shown that many techniques for comparing random variables or intervals can be generalized by means of upper and lower expectations of sets of gambles, so as to compare more general kinds of uncertain quantities. We show that many comparison criteria proposed so far can be cast in a general form.


Preference Relation Statistical Preference Stochastic Dominance Lower Expectation Interval Ordering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiche, F., Dubois, D.: An Extension of Stochastic Dominance to Fuzzy Random Variables. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 159–168. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Chateauneuf, A., Cohen, M.: Cardinal extensions of the EU model based on Choquet integral. In: Bouyssou, D., Dubois, D., Pirlot, M., Prade, H. (eds.) Decision-Making Process Concepts and Methods, ch. 3. ISTE & Wiley, London (2009)Google Scholar
  3. 3.
    Couso, I., Moral, S.: Sets of Desirable Gambles and Credal Sets. In: 6th International Symposium on Imprecise Probability: Theories and Applications, Durham, United Kingdom (2009)Google Scholar
  4. 4.
    Couso, I., Sánchez, L.: The Behavioral Meaning of the Median. In: Borgelt, C., González-Rodríguez, G., Trutschnig, W., Lubiano, M.A., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds.) Combining Soft Computing and Statistical Methods in Data Analysis. AISC, vol. 77, pp. 115–122. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    David, H.: The method of paired comparisons. In: Griffin’s Statistical Monographs & Courses, vol. 12. Charles Griffin & D. Ltd., London (1963)Google Scholar
  6. 6.
    De Cooman, G.: Further thoughts on possibilistic previsions: A rejoinder. Fuzzy Sets and Systems 153, 375–385 (2005)CrossRefGoogle Scholar
  7. 7.
    Denoeux, T.: Extending stochastic ordering to belief functions on the real line. Information Sciences 179, 1362–1376 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Sets and Systems 24, 279–300 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dubois, D., Prade, H.: Random sets and fuzzy interval analysis. Fuzzy Sets and Systems 42, 87–101 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fishburn, P.: Interval Orderings. Wiley, New-York (1987)Google Scholar
  11. 11.
    Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. Journal of Mathematical Economics 181, 41–153 (1989)MathSciNetGoogle Scholar
  12. 12.
    Hadar, J., Russell, W.: Rules for Ordering Uncertain Prospects. American Economic Review 59, 25–34 (1969)Google Scholar
  13. 13.
    Jaffray, J.Y., Jeleva, M.: Information processing under imprecise risk with the Hurwicz criterion. In: Proc. of the Fifth Int. Symposium on Imprecise Probabilities and Their Applications, ISIPTA 2007 (2007)Google Scholar
  14. 14.
    Kikuti, D., Cozman, F.G., De Campos, C.P.: Partially ordered preferences in decision trees: computing strategies with imprecision in probabilities. In: Brafman, R., Junker, U. (eds.) Multidisciplinary IJCAI 2005 Workshop on Advances in Preference Handling, pp. 118–123 (2005)Google Scholar
  15. 15.
    Sánchez, L., Couso, I., Casillas, J.: Modeling Vague Data with Genetic Fuzzy Systems under a Combination of Crisp and Imprecise Criteria. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making, MCDM 2007 (2007)Google Scholar
  16. 16.
    Sánchez, L., Couso, I., Casillas, J.: Genetic Learning of Fuzzy Rules based on Low Quality Data. Fuzzy Sets and Systems 160, 2524–2552 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Satia, J.K., Roy, J., Lave, E.: Markovian decision processes with uncertain transition probabilities. Operations Research 21(3), 728–740 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Savage, L.J.: The Foundations of Statistics. Wiley (1954); 2nd edn. Dover Publications Inc., New York (1972) Google Scholar
  19. 19.
    Troffaes, M.C.W.: Decision making under uncertainty using imprecise probabilities. International Journal of Approximate Reasoning 45, 17–19 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall (1991)Google Scholar
  21. 21.
    Zaffalon, M., Wesnes, K., Petrini, O.: Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data. Artificial Intelligence in Medicine 29, 61–79 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Inés Couso
    • 1
  • Didier Dubois
    • 2
  1. 1.Universidad OviedoGijonSpain
  2. 2.IRIT-CNRSToulouseFrance

Personalised recommendations