Skip to main content

The Bipolar Universal Integral

  • Conference paper

Part of the Communications in Computer and Information Science book series (CCIS,volume 299)

Abstract

The concept of universal integral, recently proposed, generalizes the Choquet, Shilkret and Sugeno integrals. Those integrals admit a bipolar formulation, useful in those situations where the underlying scale is bipolar. In this paper we propose the bipolar universal integral generalizing the Choquet, Shilkret and Sugeno bipolar integrals. To complete the generalization we also provide the characterization of the bipolar universal integral with respect to a level dependent bi-capacity.

Keywords

  • Choquet
  • Sugeno and Shilkret integrals
  • universal integral
  • bipolar integrals

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31718-7_38
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-31718-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   131.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodjanova, S., Kalina, M.: Sugeno and Shilkret integrals, and T-and S-evaluators. In: SISY 2009 - 7th International Symposium on Intelligent Systems and Informatics, pp. 109–114 (2009)

    Google Scholar 

  2. Choquet, G.: Theory of Capacities. Annales de l’Institute Fourier (Grenoble) 5, 131–295 (1953/1954)

    Google Scholar 

  3. Grabisch, M.: The symmetric Sugeno integral. Fuzzy Sets and Systems 139(3), 473–490 (2003)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Grabisch, M.: The Möbius transform on symmetric ordered structures and its application to capacities on finite sets. Discrete Mathematics 287(1-3), 17–34 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Grabisch, M., Labreuche, C.: Bi-capacities–I: definition, Möbius transform and interaction. Fuzzy Sets and Systems 151(2), 211–236 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Grabisch, M., Labreuche, C.: Bi-capacities–II: the Choquet integral. Fuzzy Sets and Systems 151(2), 237–259 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions (Encyclopedia of Mathematics and its Applications). Cambridge University Press (2009)

    Google Scholar 

  8. Greco, S.: Generalizing again the Choquet integral: the profile dependent Choquet integral. In: Mesiar, R., Klement, E.P., Dubois, D., Grabisch, M. (eds.) Decision Theory: Qualitative and Quantitative Approaches. Linz Seminar on Fuzzy Set and System, pp. 66–79 (2011)

    Google Scholar 

  9. Greco, S., Matarazzo, B., Giove, S.: The Choquet integral with respect to a level dependent capacity. Fuzzy Sets and Systems 175(1), 1–35 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Greco, S., Matarazzo, B., Slowinski, R.: Bipolar Sugeno and Choquet integrals. In: De Baets, B., Fodor, J., Pasi, G. (eds.) EUROWorking Group on Fuzzy Sets, Workshop on Informations Systems (EUROFUSE 2002), pp. 191–196 (2002)

    Google Scholar 

  11. Halmos, P.R.: Measure theory, vol. 18. Springer (1974)

    Google Scholar 

  12. Klement, E.P., Kolesárová, A., Mesiar, R., Stupňanová, A.: Universal Integrals Based on Level Dependent Capacities. In: IFSA-EUSFLAT. Citeseer (2009)

    Google Scholar 

  13. Klement, E.P., Kolesárová, A., Mesiar, R., Stupňanová, A.: A generalization of universal integrals by means of level dependent capacities (Preprint submitted to Knowledge-Based Systems) (2011)

    Google Scholar 

  14. Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Transactions on Fuzzy Systems 18(1), 178–187 (2010)

    CrossRef  Google Scholar 

  15. Mesiar, R., Mesiarová-Zemánková, A., Ahmad, K.: Level-dependent Sugeno integral. IEEE Transactions on Fuzzy Systems 17(1), 167–172 (2009)

    CrossRef  Google Scholar 

  16. Mesiar, R., Mesiarová-Zemánková, A., Ahmad, K.: Discrete Choquet integral and some of its symmetric extensions. Fuzzy Sets and Systems 184(1), 148–155 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Shilkret, N.: Maxitive measure and integration. In: Indagationes Mathematicae (Proceedings), vol. 74, pp. 109–116. Elsevier (1971)

    Google Scholar 

  18. Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. Thesis. Tokyo Institute of Technology (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Greco, S., Mesiar, R., Rindone, F. (2012). The Bipolar Universal Integral. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31718-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31718-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31717-0

  • Online ISBN: 978-3-642-31718-7

  • eBook Packages: Computer ScienceComputer Science (R0)