Advertisement

General Interpolation by Polynomial Functions of Distributive Lattices

  • Miguel Couceiro
  • Didier Dubois
  • Henri Prade
  • Agnès Rico
  • Tamás Waldhauser
Part of the Communications in Computer and Information Science book series (CCIS, volume 299)

Abstract

For a distributive lattice L, we consider the problem of interpolating functions f : D → L defined on a finite set D ⊆ L n , by means of lattice polynomial functions of L. Two instances of this problem have already been solved.

In the case when L is a distributive lattice with least and greatest elements 0 and 1, Goodstein proved that a function f : {0,1} n  → L can be interpolated by a lattice polynomial function p : L n  → L if and only if f is monotone; in this case, the interpolating polynomial p was shown to be unique.

The interpolation problem was also considered in the more general setting where L is a distributive lattice, not necessarily bounded, and where D ⊆ L n is allowed to range over cuboids \(D=\left\{ a_{1},b_{1}\right\} \times\cdots\times\left\{ a_{n},b_{n}\right\} \) with a i ,b i  ∈ L and a i  < b i . In this case, the class of such partial functions that can be interpolated by lattice polynomial functions was completely described.

In this paper, we extend these results by completely characterizing the class of lattice functions that can be interpolated by polynomial functions on arbitrary finite subsets D ⊆ L n . As in the latter setting, interpolating polynomials are not necessarily unique. We provide explicit descriptions of all possible lattice polynomial functions that interpolate these lattice functions, when such an interpolation is available.

Keywords

Polynomial Function Boolean Algebra Distributive Lattice Lattice Function Aggregation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouyssou, D., Dubois, D., Prade, H., Pirlot, M. (eds.): Decision-Making Process – Concepts and Methods. ISTE/John Wiley (2009)Google Scholar
  2. 2.
    Couceiro, M., Marichal, J.-L.: Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices. Fuzzy Sets and Systems 161(5), 694–707 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Couceiro, M., Waldhauser, T.: A generalization of Goodstein’s theorem: interpolation by polynomial functions of distributive lattices, http://arxiv.org/abs/1110.0321
  4. 4.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, New York (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Goodstein, R.L.: The Solution of Equations in a Lattice. Proc. Roy. Soc. Edinburgh Section A 67, 231–242 (1965/1967)Google Scholar
  6. 6.
    Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. Eur. J. Oper. Res. 89(3), 445–456 (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  8. 8.
    Marichal, J.-L.: On Sugeno integral as an aggregation function. Fuzzy Sets and Systems 114, 347–365 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Marichal, J.-L.: Weighted lattice polynomials. Discrete Mathematics 309(4), 814–820 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rico, A.: Sugeno integral in a finite Boolean algebra. Fuzzy Sets and Systems 159, 1709–1718 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rico, A., Grabisch, M., Labreuche, C., Chateauneuf, A.: Preference modeling on totally ordered sets by the Sugeno integral. Discrete Applied Math. 147(1), 113–124 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Prade, H., Rico, A., Serrurier, M.: Elicitation of Sugeno Integrals: A version space learning perspective. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 392–401. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Prade, H., Rico, A., Serrurier, M., Raufaste, E.: Elicitating Sugeno Integrals: Methodology and a Case Study. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 712–723. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Sugeno, M.: Theory of Fuzzy Integrals and its Applications. PhD thesis. Tokyo Institute of Technology, Tokyo (1974)Google Scholar
  15. 15.
    Sugeno, M.: Fuzzy measures and fuzzy integrals – a survey. In: Gupta, M.M., Saridis, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Processes, pp. 89–102. North-Holland, New York (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miguel Couceiro
    • 1
  • Didier Dubois
    • 2
  • Henri Prade
    • 2
  • Agnès Rico
    • 3
  • Tamás Waldhauser
    • 4
    • 1
  1. 1.FSTCUniversity of LuxembourgLuxembourg
  2. 2.IRITCNRS and Université de ToulouseFrance
  3. 3.ERICUniversité de LyonFrance
  4. 4.Bolyai InstituteUniversity of SzegedSzegedHungary

Personalised recommendations