Stability in Aggregation Operators

  • Daniel Gómez
  • Javier Montero
  • J. Tinguaro Rodríguez
  • Karina Rojas
Part of the Communications in Computer and Information Science book series (CCIS, volume 299)

Abstract

Aggregation functions have been widely studied in literature. Nevertheless, few efforts have been dedicated to analyze those properties related with the family of operators in a global way. In this work, we analyze the stability in a family of aggregation operators The stability property for a family of aggregation operators tries to force a family to have a stable/continuous definition in the sense that the aggregation of n − 1 items should be similar to the aggregation of n items if the last item is the aggregation of the previous n − 1 items. Following this idea some definitions and results are given.

Keywords

Aggregation Process Aggregation Function Aggregation Operator Weak Stability Stable Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amo, A., Montero, J., Molina, E.: Representation of consistent recursive rules. European Journal of Operational Research 130, 29–53 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions, a Guide to Practitioners. Springer, Berlin (2007)Google Scholar
  3. 3.
    Calvo, T., Kolesarova, A., Komornikova, M., Mesiar, R.: Aggregation operators, properties, classes and construction methods. In: Calvo, T., et al. (eds.) Aggregation Operators New trends ans Aplications, pp. 3–104. Physica-Verlag, Heidelberg (2002)Google Scholar
  4. 4.
    Calvo, T., Mayor, G., Torrens, J., Suer, J., Mas, M., Carbonell, M.: Generation of weighting triangles associated with aggregation fuctions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(4), 417–451 (2000)MathSciNetMATHGoogle Scholar
  5. 5.
    Cutello, V., Montero, J.: Hierarchical aggregation of OWA operators: basic measures and related computational problems. Uncertainty, Fuzzinesss and Knowledge-Based Systems 3, 17–26 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cutello, V., Montero, J.: Recursive families of OWA operators. In: Proceedings FUZZ-IEEE Conference, pp. 1137–1141. IEEE Press, Piscataway (1994)Google Scholar
  7. 7.
    Cutello, V., Montero, J.: Recursive connective rules. International Journal of Intelligent Systems 14, 3–20 (1999)CrossRefMATHGoogle Scholar
  8. 8.
    Gómez, D., Montero, J.: A discussion of aggregation functions. Kybernetika 40, 107–120 (2004)MathSciNetMATHGoogle Scholar
  9. 9.
    Gómez, D., Montero, J., Yáñez, J., Poidomani, C.: A graph coloring algorithm approach for image segmentation. Omega 35, 173–183 (2007)CrossRefGoogle Scholar
  10. 10.
    Gómez, D., Montero, J., Yánez, J.: A coloring algorithm for image classification. Information Sciences 176, 3645–3657 (2006)CrossRefMATHGoogle Scholar
  11. 11.
    Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation Functions. Encyclopedia of Mathematics and its Applications (2009)Google Scholar
  12. 12.
    Kolesárová, A.: Sequential aggregation. In: González, M., et al. (eds.) Proceedings of the Fifth International Summer School on Aggregation Operators, AGOP, pp. 183–187. Universitat de les Illes Balears, Palma de Mallorca (2009)Google Scholar
  13. 13.
    Montero, J., Gómez, D., Bustince, H.: On the relevance of some families of fuzzy sets. Fuzzy Sets and Systems 158, 2429–2442 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Montero, J., López, V., Gómez, D.: The Role of Fuzziness in Decision Making. STUDFUZZ, vol. 215, pp. 337–349. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Rojas, K., Gómez, D., Rodríguez, J.T., Montero, J.: Some Properties of Consistency in the Families of Aggregation Operators. In: Melo-Pinto, P., Couto, P., Serôdio, C., Fodor, J., De Baets, B. (eds.) Eurofuse 2011. AISC, vol. 107, pp. 169–176. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190 (1988)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yager, R.R., Rybalov, A.: Nonconmutative self-identity aggregation. Fuzzy Sets and Systems 85, 73–82 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel Gómez
    • 1
  • Javier Montero
    • 2
  • J. Tinguaro Rodríguez
    • 2
  • Karina Rojas
    • 2
  1. 1.Escuela de EstadísticaComplutense UniversityMadridSpain
  2. 2.Facultad de Ciencias MatematicasComplutense UniversityMadridSpain

Personalised recommendations