Algorithms for Computation of Concept Trilattice of Triadic Fuzzy Context

  • Petr Osicka
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 299)


Triadic concept analysis (TCA) is a method of relational data analysis whose aim is to extract a hierarchically structured set of particular clusters from a three-way data describing objects, attributes, and conditions. We present two algorithms for the problem of computing all such clusters from a data describing degrees to which objects have attributes under conditions.


Fuzzy Logic Formal Concept Residuated Lattice Concept Lattice Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belohlavek, R.: Fuzzy Galois connections. Math. Logic Quarterly 45(4), 497–504 (1999) ISSN 0942-5616MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Belohlavek, R.: Reduction and a simple proof of characterization of fuzzy concept lattices. Fundamenta Informaticae 46(4), 277–285 (2001) ISSN 0169-2968Google Scholar
  3. 3.
    Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, Academic/Plenum Publishers, New York (2002)zbMATHGoogle Scholar
  4. 4.
    Belohlavek, R.: Algorithms for fuzzy concept lattices. In: Proc. Fourth Int. Conf. on Recent Advances in Soft Computing, RASC 2002, Nottingham, United Kingdom, December 12-13, pp. 200–205 (2002)Google Scholar
  5. 5.
    Belohlavek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Proc. CLA 2005, 3rd Int. Conference on Concept Lattices and Their Applications, September 7-9, pp. 34–45. Czech Republic, Olomouc (2005) ISBN 80-248-0863-3Google Scholar
  6. 6.
    Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Computing the lattice of all fixpoints of a fuzzy closure operator. IEEE Transactions on Fuzzy Systems 18(3), 546–557 (2010)CrossRefGoogle Scholar
  7. 7.
    Belohlavek, R.: Optimal decompositions of matrices with entries from residuated lattices. J. Logic and Computation (September 7, 2011), doi:10.1093/logcom/exr023Google Scholar
  8. 8.
    Belohlavek, R., Osicka, P.: Triadic concept lattices of data with graded attributes. International Journal of General Systems (December 12, 2011), doi:10.1080/03081079.2011.643548Google Scholar
  9. 9.
    Belohlavek, R., Osička, P., Vychodil, V.: Factorizing Three-Way Ordinal Data Using Triadic Formal Concepts. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS, vol. 7022, pp. 400–411. Springer, Heidelberg (2011), doi:10.1007/978-3-642-24764-4_35CrossRefGoogle Scholar
  10. 10.
    Biedermann, K.: An equational theory for trilattices. In: Algebra Universalis, vol. 42. Birkhäuser, Basel (1999)Google Scholar
  11. 11.
    Biedermann, K.: Triadic Galois Connections Triadic Galois connections. In: Denecke, K., Lüders, O. (eds.) General Algebra and Applications in Discrete Mathematics, pp. 23–33. Shaker, Aachen (1997)Google Scholar
  12. 12.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS – An Algorithm for Mining Iceberg Tri-Lattices. In: ICDM 2006, pp. 907–911 (2006)Google Scholar
  15. 15.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review 51(3), 455–500 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kroonenberg, P.M.: Applied Multiway Data Analysis. J. Wiley (2008)Google Scholar
  17. 17.
    Lehmann, F., Wille, R.: A Triadic Approach to Formal Concept Analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  18. 18.
    Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  19. 19.
    Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. J. Wiley (2004)Google Scholar
  20. 20.
    Ward, M., Dilworth, R.P.: Residuated lattices. Trans. Amer. Math. Soc. 45, 335–354 (1939)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  22. 22.
    Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petr Osicka
    • 1
  1. 1.DAMOL (Data Analysis and Modeling Laboratory), Department of Computer SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations