Skip to main content

A Feature Reduction Strategy for the Analysis of Voluminous Biomedical Patterns

  • Conference paper
  • 1059 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 299))

Abstract

The analysis of voluminous patterns is often problematic due to the confounding effect of features that are not relevant to the problem at hand. For instance, the classification of biomedical spectra is often best achieved through the identification of a subset of highly discriminatory features while ignoring the non-relevant ones. With respect to pattern classification, we present a feature reduction strategy, which begins with the instantiation of many classifiers operating on different subsets of features, employing a feature sampling method to identify discriminatory feature subsets. These subsets are further aggregated to improve the overall performance of the underlying classifiers. We empirically demonstrate, using a voluminous biomedical dataset, that this strategy produces superior classification accuracies compared against a set of benchmarks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dreiseitla, S., Ohno-Machadob, L.: Logistic Regression and Artificial Neural Network Classification Models: A Methodology Review. J. Biomed. Inform. 35, 352–359 (2002)

    Article  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Dodrecht (2006)

    MATH  Google Scholar 

  3. El-Deredy, W.: Pattern Recognition Approaches in Biomedical and Clinical Magnetic Resonance Spectroscopy: A Review. NMR Biomed. 10, 99–124 (1997)

    Article  Google Scholar 

  4. Rokach, L.: Pattern Classification Using Ensemble Methods. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  5. Jin, Y., Wang, L.: Fuzzy Systems in Bioinformatics and Computational Biology. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009)

    MATH  Google Scholar 

  7. Belkić, D., Belkić, K.: Signal Processing in Magnetic Resonance Spectroscopy with Biomedical Applications. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  8. Bouchon-Meunier, B., Coletti, G., Yager, R.R.: Modern Information Processing: From Theory to Applications. Elsevier, Amsterdam (2006)

    Google Scholar 

  9. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  10. Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook. Springer, Dodrecht (2005)

    Book  MATH  Google Scholar 

  11. Ripley, B.D.: Neural Networks and Related Methods for Classification. J. Roy. Stat. Soc. B 56, 409–456 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Bargiela, A., Pedrycz, W.: Human-Centric Information Processing Through Granular Modelling. Springer, Heidelberg (2009)

    Book  Google Scholar 

  13. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E.: Multivariate Data Analysis. Prentice-Hall, Hoboken (2009)

    Google Scholar 

  14. Pizzi, N.J., Pedrycz, W.: Aggregating Multiple Classification Results Using Fuzzy Integration and Stochastic Feature Selection. Intl. J. Approx. Reason. 51, 883–894 (2010)

    Article  Google Scholar 

  15. Pizzi, N.J.: Classification of Biomedical Spectra Using Stochastic Feature Selection. Neural Network World 15, 257–268 (2005)

    Google Scholar 

  16. Pizzi, N.J., Pedrycz, W.: Randomized Feature Selection Using Scopira. In: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society, Banff, Canada, June 27–30, pp. 669–674 (2004)

    Google Scholar 

  17. Liu, Q., Sung, A., Chen, Z., Xu, J.: Feature Mining and Pattern Classification for LSB Matching Steganography in Grayscale Images. Patt. Recogn. 41, 56–66 (2008)

    Article  MATH  Google Scholar 

  18. Kasabov, N., Song, Q.: DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and its Application for Time-Series Prediction. IEEE Trans. Fuzzy Syst. 10, 144–154 (2002)

    Article  Google Scholar 

  19. Seber, G.A.F.: Multivariate Observations. Wiley, Hoboken (2004)

    Google Scholar 

  20. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Trans. Patt. Anal. Mach. Intell. 22, 4–37 (2000)

    Article  Google Scholar 

  21. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  22. Wang, L.: Support Vector Machines: Theory and Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  23. De Jong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  24. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  25. Everitt, B.S.: Moments of the Statistics Kappa and Weighted Kappa. British J. Math. Stat. Psych. 21, 97–103 (1968)

    Article  Google Scholar 

  26. Pedrycz, W., Breuer, A., Pizzi, N.J.: Genetic Design of Feature Spaces for Pattern Classifiers. Artif. Intell. Med. 32, 115–125 (2004)

    Article  Google Scholar 

  27. Pizzi, N.J., Pedrycz, W.: A Fuzzy Logic Network for Pattern Classification. In: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society, Cincinnati, USA, June 14–17, pp. 53–58 (2009)

    Google Scholar 

  28. Krzanowski, W.: Principles of Multivariate Analysis. Oxford University Press, New York (1988)

    MATH  Google Scholar 

  29. Pavia, D.L., Lampman, G.M., Kriz, G.S.: Introduction to Spectroscopy. Harcourt Brace College, Fort Worth (1996)

    Google Scholar 

  30. Friebolin, H.: Basic One- and Two-Dimensional NMR Spectroscopy. Wiley, New York (2005)

    Google Scholar 

  31. Pizzi, N.J.: Fuzzy Quartile Encoding as a Preprocessing Method for Biomedical Pattern Classification. Theoretical Comp. Sci. 412, 5909–5929 (2011)

    Article  MathSciNet  Google Scholar 

  32. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pizzi, N.J. (2012). A Feature Reduction Strategy for the Analysis of Voluminous Biomedical Patterns. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31718-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31718-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31717-0

  • Online ISBN: 978-3-642-31718-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics