Abstract
State-complete Riesz MV-algebras are a particular class of probability MV-algebras. We associate to any state-complete Riesz MV-algebra (A,s) a measure space (X,Ω,μ) such that (A,s) and (L 1(μ) u ,s μ ) are isometrically isomorphic Riesz MV-algebras, where L 1(μ) u is an interval of L 1(μ) and s μ is the integral. This result can be seen as an analogue of Kakutani’s concrete representation for L-spaces [10] and it leads to a categorical duality between Riesz MV-algebras and a special class of measure spaces (called L-measure spaces).
Keywords
- Riesz MV-algebra
- state
- L-space
- L-measure space
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux réticulés. Lecture Notes in Math., vol. 608. Springer, Berlin (1977)
Chang, C.C.: Algebraic analysis of many valued logics. Transactions of the American Mathematical Society 88, 467–490 (1958)
Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of many-valued Reasoning. Kluwer, Dordrecht (2000)
De Jonge, E., van Rooij, A.C.M.: Introduction to Riesz spaces. Mathematical Centre Tracs 78, Amsterdam (1977)
Di Nola, A., Georgescu, G., Sessa, S.: Closed Ideals of MV-algebras. Contemporary Mathematics 235, 99–112 (1999)
Di Nola, A., Flondor, P., Leuştean, I.: MV-modules. Journal of Algebra 267(1), 21–40 (2003)
Di Nola, A., Leuştean, I.: Riesz MV-algebras and their logic. In: Proceedings of EUSFLAT-LFA 2011, pp. 140–145 (2011) (to appear)
Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press (1974)
Fremlin, D.H.: Measure Theory, http://www.essex.ac.uk/maths/people/fremlin/mt.htm
Kakutani, S.: Concrete representations of abstract (L)-spaces and the mean ergodic theorem. Annals of Mathematics 42, 523–537 (1941)
Leuştean, I.: Metric completions of MV-algebras with states. An approach to stochastic independence. Journal of Logic and Computation 21(3), 493–508 (2011)
Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland, Amsterdam (1971)
Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer (1991)
Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J. Functional Analysis 65, 15–63 (1986)
Mundici, D.: Averaging the truth value Łukasiewicz logic. Studia Logica 55, 113–127 (1995)
Mundici, D.: Advanced Łukasiewicz calculus and MV-algebras. Trends in Logic, vol. 35. Springer (2011)
Schechter, E.: Handbook of Analysis and Its Foundations. Academic Press (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leuştean, I. (2012). State-Complete Riesz MV-Algebras and L-Measure Spaces. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31715-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-31715-6_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31714-9
Online ISBN: 978-3-642-31715-6
eBook Packages: Computer ScienceComputer Science (R0)