Skip to main content

State-Complete Riesz MV-Algebras and L-Measure Spaces

  • Conference paper
  • 779 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 298)

Abstract

State-complete Riesz MV-algebras are a particular class of probability MV-algebras. We associate to any state-complete Riesz MV-algebra (A,s) a measure space (X,Ω,μ) such that (A,s) and (L 1(μ) u ,s μ ) are isometrically isomorphic Riesz MV-algebras, where L 1(μ) u is an interval of L 1(μ) and s μ is the integral. This result can be seen as an analogue of Kakutani’s concrete representation for L-spaces [10] and it leads to a categorical duality between Riesz MV-algebras and a special class of measure spaces (called L-measure spaces).

Keywords

  • Riesz MV-algebra
  • state
  • L-space
  • L-measure space

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31715-6_25
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-31715-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux réticulés. Lecture Notes in Math., vol. 608. Springer, Berlin (1977)

    MATH  Google Scholar 

  2. Chang, C.C.: Algebraic analysis of many valued logics. Transactions of the American Mathematical Society 88, 467–490 (1958)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of many-valued Reasoning. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  4. De Jonge, E., van Rooij, A.C.M.: Introduction to Riesz spaces. Mathematical Centre Tracs 78, Amsterdam (1977)

    Google Scholar 

  5. Di Nola, A., Georgescu, G., Sessa, S.: Closed Ideals of MV-algebras. Contemporary Mathematics 235, 99–112 (1999)

    CrossRef  Google Scholar 

  6. Di Nola, A., Flondor, P., Leuştean, I.: MV-modules. Journal of Algebra 267(1), 21–40 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Di Nola, A., Leuştean, I.: Riesz MV-algebras and their logic. In: Proceedings of EUSFLAT-LFA 2011, pp. 140–145 (2011) (to appear)

    Google Scholar 

  8. Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press (1974)

    Google Scholar 

  9. Fremlin, D.H.: Measure Theory, http://www.essex.ac.uk/maths/people/fremlin/mt.htm

  10. Kakutani, S.: Concrete representations of abstract (L)-spaces and the mean ergodic theorem. Annals of Mathematics 42, 523–537 (1941)

    CrossRef  MathSciNet  Google Scholar 

  11. Leuştean, I.: Metric completions of MV-algebras with states. An approach to stochastic independence. Journal of Logic and Computation 21(3), 493–508 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland, Amsterdam (1971)

    MATH  Google Scholar 

  13. Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer (1991)

    Google Scholar 

  14. Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J. Functional Analysis 65, 15–63 (1986)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Mundici, D.: Averaging the truth value Łukasiewicz logic. Studia Logica 55, 113–127 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Mundici, D.: Advanced Łukasiewicz calculus and MV-algebras. Trends in Logic, vol. 35. Springer (2011)

    Google Scholar 

  17. Schechter, E.: Handbook of Analysis and Its Foundations. Academic Press (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leuştean, I. (2012). State-Complete Riesz MV-Algebras and L-Measure Spaces. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31715-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31715-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31714-9

  • Online ISBN: 978-3-642-31715-6

  • eBook Packages: Computer ScienceComputer Science (R0)