Advertisement

An Extension of Gödel Logic for Reasoning under Both Vagueness and Possibilistic Uncertainty

  • Moataz El-Zekey
  • Lluis Godo
Part of the Communications in Computer and Information Science book series (CCIS, volume 298)

Abstract

In this paper we introduce a logic called FNG~(ℚ) that combines the well-known Gödel logic with a strong negation, rational truth-constants and Possibilistic logic. In this way, we can formalize reasoning involving both vagueness and (possibilistic) uncertainty. We show that the defined logical system is useful to capture the kind of reasoning at work in the medical diagnosis system CADIAG-2, and we finish by pointing out some of its potential advantages to be developed in future work.

Keywords

Fuzzy Logic Propositional Variable Boolean Formula Possibilistic Logic Necessity Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choquet, G.: Theory of capacities. Annales de l’Institut Fourier (5), 131–295 (1953)Google Scholar
  2. 2.
    Ciabattoni, A., Picado Muiño, D., Vetterlein, T., El-Zekey, M.: Formal approaches to rule-based systems in medicine: the case of CADIAG-2 (submitted)Google Scholar
  3. 3.
    Ciabattoni, A., Vetterlein, T.: On the (fuzzy) logical content of CADIAG-2. Fuzzy Sets and Systems 161, 1941–1958 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dubois, D., Esteva, F., Godo, L., Prade, H.: Fuzzy-set based logics - An history-oriented presentation of their main developments. In: Gabbay, D.M., Woods, J. (eds.) Handbook of the History of Logic. The many valued and nonmonotonic turn in logic, vol. 8, pp. 325–449 (2007)Google Scholar
  5. 5.
    Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, et al. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming. Nonmonotonic Reasoning and Uncertain Reasoning, vol. 3, pp. 439–513. Oxford University Press (1994)Google Scholar
  6. 6.
    Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing of uncertainty. Plenum Press, New York (1988)zbMATHGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems 144, 3–23 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Esteva, F., Godo, L., Hájek, P., Navara, M.: Residuated fuzzy logics with an involutive negation. Archive for Mathematical Logic 39(2), 103–124 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Esteva, F., Gispert, J., Godo, L., Noguera, C.: Adding truth-constants to logics of a continuous t-norm: axiomatization and completeness results. Fuzzy Sets and Systems 158, 597–618 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Flaminio, T., Godo, L.: A logic for reasoning about the probability of fuzzy events. Fuzzy Sets and Systems 158(6), 625–638 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Flaminio, T., Godo, L., Marchioni, E.: On the Logical Formalization of Possibilistic Counterparts of States over n-Valued Lukasiewicz Events. Journal of Logic and Computation 21(3), 429–446 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Halpern, J.Y.: Reasoning about uncertainty. MIT Press, Cambridge (2003)zbMATHGoogle Scholar
  13. 13.
    Hájek, P.: Metamathematics of fuzzy logic. Trends in Logic—Studia Logica Library, vol. 4. Kluwer Academic Publishers, Dordrecht (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Picado-Muiño, D.: A probabilistic interpretation of the medical expert system CADIAG-2. Soft Computing 15(10), 2013–2020 (2011)zbMATHCrossRefGoogle Scholar
  15. 15.
    Picado-Muiño, D.: Measuring and repairing inconsistency in probabilistic knowledge bases. International Journal of Approximate Reasoning 52(6), 828–840 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  17. 17.
    Sugeno, M.: Theory of Fuzzy Integrals and its Applications. PhD thesis, Tokyo Institute of Technology, Tokio, Japan (1974)Google Scholar
  18. 18.
    Walley, P.: Statistical reasoning with imprecise probabilities. Monographs on Statistics and Applied Probability, vol. 42. Chapman and Hall Ltd., London (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Moataz El-Zekey
    • 1
  • Lluis Godo
    • 2
  1. 1.Department of Basic Sciences, Faculty of EngineeringBenha UniversityEgypt
  2. 2.IIIA-CSICBellaterraSpain

Personalised recommendations