Skip to main content

Non-commutative Product Logic and Probability of Fuzzy Events

  • Conference paper

Part of the Communications in Computer and Information Science book series (CCIS,volume 298)

Abstract

In this paper we develop the non-commutative product logic psΠL as the non-commutative analogue of the product logic ΠL introduced by Hájek, Godo and Esteva [10]. The investigation of this logical system is an open problem in Hájek [9]. We also introduce a probabilistic logic based on the non-commutative product logic capable to reason about the probability of fuzzy events.

Keywords

  • non-commutative logic
  • product logic
  • fuzzy events

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31715-6_22
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-31715-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cignoli, R., Torrens, A.: An algebraic analysis of product logic. Multiple-Valued Logic 5, 45–65 (2000)

    MathSciNet  MATH  Google Scholar 

  2. DiNola, A., Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras -part II. Multiple-Valued Logic 8(5-6), 717–750 (2002)

    MathSciNet  Google Scholar 

  3. Dvurečenskij, A., Rachůnek, J., Šalounová, D.: State operators on generalizations of fuzzy structures. Fuzzy Sets and Systems 187(1), 58–76 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Flaminio, T., Godo, L.: A logic for reasoning about the probability of fuzzy events. Fuzzy Sets and Systems 158, 625–638 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Flaminio, T., Montagna, F.: MV-algebras with internal states and probabilistic fuzzy logics. International Journal of Approximate Reasoning 50, 138–152 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Georgescu, G.: Bosbach states on fuzzy structures. Soft Computing 8, 217–230 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic, vol. 4. Kluwer, Dordrecht (1998)

    CrossRef  MATH  Google Scholar 

  8. Hájek, P.: Fuzzy logics with non-commutative conjunctions. Journal of Logic and Computation 13, 469–479 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Hájek, P.: Observations on non-commutative fuzzy logic. Soft Computing 8, 38–43 (2003)

    CrossRef  MATH  Google Scholar 

  10. Hájek, P., Godo, L., Esteva, F.: A complete many-valued logic with product-conjunction. Arch. Math. Logic 35(3), 191–208 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Leuştean, I.: Non-commutative Łukasiewicz propositional logic. Arch. Math. Logic 45(2), 191–213 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diaconescu, D. (2012). Non-commutative Product Logic and Probability of Fuzzy Events. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31715-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31715-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31714-9

  • Online ISBN: 978-3-642-31715-6

  • eBook Packages: Computer ScienceComputer Science (R0)