Non-commutative Product Logic and Probability of Fuzzy Events

  • Denisa Diaconescu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 298)


In this paper we develop the non-commutative product logic psΠL as the non-commutative analogue of the product logic ΠL introduced by Hájek, Godo and Esteva [10]. The investigation of this logical system is an open problem in Hájek [9]. We also introduce a probabilistic logic based on the non-commutative product logic capable to reason about the probability of fuzzy events.


non-commutative logic product logic fuzzy events 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cignoli, R., Torrens, A.: An algebraic analysis of product logic. Multiple-Valued Logic 5, 45–65 (2000)MathSciNetzbMATHGoogle Scholar
  2. 2.
    DiNola, A., Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras -part II. Multiple-Valued Logic 8(5-6), 717–750 (2002)MathSciNetGoogle Scholar
  3. 3.
    Dvurečenskij, A., Rachůnek, J., Šalounová, D.: State operators on generalizations of fuzzy structures. Fuzzy Sets and Systems 187(1), 58–76 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Flaminio, T., Godo, L.: A logic for reasoning about the probability of fuzzy events. Fuzzy Sets and Systems 158, 625–638 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Flaminio, T., Montagna, F.: MV-algebras with internal states and probabilistic fuzzy logics. International Journal of Approximate Reasoning 50, 138–152 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Georgescu, G.: Bosbach states on fuzzy structures. Soft Computing 8, 217–230 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic, vol. 4. Kluwer, Dordrecht (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hájek, P.: Fuzzy logics with non-commutative conjunctions. Journal of Logic and Computation 13, 469–479 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hájek, P.: Observations on non-commutative fuzzy logic. Soft Computing 8, 38–43 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hájek, P., Godo, L., Esteva, F.: A complete many-valued logic with product-conjunction. Arch. Math. Logic 35(3), 191–208 (1996)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Leuştean, I.: Non-commutative Łukasiewicz propositional logic. Arch. Math. Logic 45(2), 191–213 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Denisa Diaconescu
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations