Abstract
This work focuses on a particular application of preference ranking, wherein the problem is to learn a mapping from instances to rankings over a finite set of labels, i.e. label ranking. Our approach is based on a learning reduction technique and provides such a mapping in the form of logical rules: if [antecedent] then [consequent], where [antecedent] contains a set of conditions, usually connected by a logical conjunction operator (AND) while [consequent] consists in a ranking among labels. The approach presented in this paper mainly comprises five phases: preprocessing, rules generation, post-processing, classification and ranking generation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data, Dordrecht (1991)
Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 304–313. Springer, Heidelberg (2001)
Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multiclass classificatin and ranking. In: Advances in Neural Information Processing Systems, pp. 785–792 (2002)
Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label Ranking by learning pairwise preference. Artif. Intell. 172(16-17), 1897–1916 (2008)
Cheng, W., Hühn, J., Hüllermeier, E.: Decision Tree and Instance-Based Learning for Labele Ranking. In: Proc. ICML 2009, International Conference on Machine Learning, Montreal, Canada (2009)
Aiolli, F., Sperduti, A.: A Preference Optimization Based Unifying Framework for Supervised Learning Problems. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, Springer, Heidelberg (2010)
Gärtner, T., Vembu, S.: Label Ranking Algorithms: A Survey. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning. Springer, Heidelberg (2010)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Recognition. John Wiley & Sons (2000)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Published by Morgan Kaufmann (2011)
Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Published by Addison Wesley Longman (2006)
Dekel, O., Manning, C.D., Singer, Y.: Log-linear models for label ranking. In: Advances in Neural Information Processing Systems 16 (2003)
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems 14 (2001)
Błaszczyński, J., Słowiński, R., Szeląg, M.: Sequential Covering Rule Induction Algorithm for Variable Consistency Rough Set Approaches. Information Sciences 181, 987–1002 (2011)
Błaszczyński, J., Greco, S., Słowiński, R., Szeląg, M.: Monotonic variable consistency rough set approaches. International Journal of Approximate Reasoning 50, 979–999 (2009)
Błaszczyński, J., Greco, S., Słowiński, R.: Multi-criteria classification-a new scheme for application of dominance-based decision rules. European Journal of Operational Research 181, 1030–1044 (2007)
Doumpos, M., Zopounidis, C.: Multicriteria Decision Aid Classification Methods. Applied Optimization 73, 15–38 (2004)
Grzymała-Busse, J.W.: Mining Numerical Data—A Rough Set Approach. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 12–21. Springer, Heidelberg (2007)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)
Vincke, P.: L’aide Multicritère à la décision. Editions de l’ULB, Ellipses (1988)
Jacquet-Lagreze, E., Siskos, Y.: Preference disaggregation: 20 years of MCDA experience. EJOR 130, 233–245 (2001)
de Sá, C.R., Soares, C., Jorge, A.M., Azevedo, P., Costa, J.: Mining Association Rules for Label Ranking. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 432–443. Springer, Heidelberg (2011)
Bouyssou, D.: Ranking methods based on valued preference relations: a characterization of the net flow method. European Journal of Operational Research 60, 61–68 (1992)
Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gurrieri, M., Siebert, X., Fortemps, P., Greco, S., Słowiński, R. (2012). Label Ranking: A New Rule-Based Label Ranking Method. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances on Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31709-5_62
Download citation
DOI: https://doi.org/10.1007/978-3-642-31709-5_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31708-8
Online ISBN: 978-3-642-31709-5
eBook Packages: Computer ScienceComputer Science (R0)