Skip to main content

Label Ranking: A New Rule-Based Label Ranking Method

  • Conference paper
Advances on Computational Intelligence (IPMU 2012)

Abstract

This work focuses on a particular application of preference ranking, wherein the problem is to learn a mapping from instances to rankings over a finite set of labels, i.e. label ranking. Our approach is based on a learning reduction technique and provides such a mapping in the form of logical rules: if [antecedent] then [consequent], where [antecedent] contains a set of conditions, usually connected by a logical conjunction operator (AND) while [consequent] consists in a ranking among labels. The approach presented in this paper mainly comprises five phases: preprocessing, rules generation, post-processing, classification and ranking generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data, Dordrecht (1991)

    Google Scholar 

  2. Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 304–313. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multiclass classificatin and ranking. In: Advances in Neural Information Processing Systems, pp. 785–792 (2002)

    Google Scholar 

  4. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label Ranking by learning pairwise preference. Artif. Intell. 172(16-17), 1897–1916 (2008)

    Article  MATH  Google Scholar 

  5. Cheng, W., Hühn, J., Hüllermeier, E.: Decision Tree and Instance-Based Learning for Labele Ranking. In: Proc. ICML 2009, International Conference on Machine Learning, Montreal, Canada (2009)

    Google Scholar 

  6. Aiolli, F., Sperduti, A.: A Preference Optimization Based Unifying Framework for Supervised Learning Problems. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, Springer, Heidelberg (2010)

    Google Scholar 

  7. Gärtner, T., Vembu, S.: Label Ranking Algorithms: A Survey. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning. Springer, Heidelberg (2010)

    Google Scholar 

  8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Recognition. John Wiley & Sons (2000)

    Google Scholar 

  9. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Published by Morgan Kaufmann (2011)

    Google Scholar 

  10. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Published by Addison Wesley Longman (2006)

    Google Scholar 

  11. Dekel, O., Manning, C.D., Singer, Y.: Log-linear models for label ranking. In: Advances in Neural Information Processing Systems 16 (2003)

    Google Scholar 

  12. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems 14 (2001)

    Google Scholar 

  13. Błaszczyński, J., Słowiński, R., Szeląg, M.: Sequential Covering Rule Induction Algorithm for Variable Consistency Rough Set Approaches. Information Sciences 181, 987–1002 (2011)

    Article  MathSciNet  Google Scholar 

  14. Błaszczyński, J., Greco, S., Słowiński, R., Szeląg, M.: Monotonic variable consistency rough set approaches. International Journal of Approximate Reasoning 50, 979–999 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Błaszczyński, J., Greco, S., Słowiński, R.: Multi-criteria classification-a new scheme for application of dominance-based decision rules. European Journal of Operational Research 181, 1030–1044 (2007)

    Article  MATH  Google Scholar 

  16. Doumpos, M., Zopounidis, C.: Multicriteria Decision Aid Classification Methods. Applied Optimization 73, 15–38 (2004)

    Article  Google Scholar 

  17. Grzymała-Busse, J.W.: Mining Numerical Data—A Rough Set Approach. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 12–21. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)

    Google Scholar 

  19. Vincke, P.: L’aide Multicritère à la décision. Editions de l’ULB, Ellipses (1988)

    Google Scholar 

  20. Jacquet-Lagreze, E., Siskos, Y.: Preference disaggregation: 20 years of MCDA experience. EJOR 130, 233–245 (2001)

    Article  MATH  Google Scholar 

  21. de Sá, C.R., Soares, C., Jorge, A.M., Azevedo, P., Costa, J.: Mining Association Rules for Label Ranking. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 432–443. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Bouyssou, D.: Ranking methods based on valued preference relations: a characterization of the net flow method. European Journal of Operational Research 60, 61–68 (1992)

    Article  MATH  Google Scholar 

  23. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gurrieri, M., Siebert, X., Fortemps, P., Greco, S., Słowiński, R. (2012). Label Ranking: A New Rule-Based Label Ranking Method. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances on Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31709-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31709-5_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31708-8

  • Online ISBN: 978-3-642-31709-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics