A Rough Set Approach to Knowledge Discovery by Relation Approximation

  • Sinh Hoa Nguyen
  • Hung Son Nguyen
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 297)


Relations play a crucial role in rough set theory and KDD. Typical applications of rough set methods in KDD are based on a given relation or a given family of relations (e.g. indiscernibility relation, tolerance relation, etc.). In this paper we propose a general framework for concept discovery from data using two-level learning approach. The first level responds for approximation of an unknown or a partially defined relation, and the second level uses the approximated relation to approximate some more complex concepts. We consider two types of relations including similarity and preference relations. We discuss the rough-set based methods for relation discovery and present experimental results for some complex data sets.


Relation Approximation Decision Table Ranking List Target Concept Ranking Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazan, J., Nguyen, H.S., Szczuka, M.: A view on rough set concept approximations. Fundamenta Informatica 59(2-3), 107–118 (2004)zbMATHGoogle Scholar
  2. 2.
    Nguyen, H.S., Łuksza, M., Mąkosa, E., Komorowski, J.: An Approach to Mining Data with Continuous Decision Values. In: Klopotek, M.A., Wierzchon, S.T., Trojanowski, K. (eds.) Proceedings of the International IIS: IIPWM 2005, June 13-16. AISC, pp. 653–662. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Nguyen, S.H., Bazan, J.G., Skowron, A., Nguyen, H.S.: Layered Learning for Concept Synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Nguyen, S.H.: Regularity analysis and its applications in data mining. In: Polkowski, L., Lin, T.Y., Tsumoto, S. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems. STUDFUZZ, vol. 56, pp. 289–378. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Olave, M., Rajkovic, V., Bohanec, M.: An application for admission in public school systems. In: Snellen, I.T.M., van de Donk, W.B.H.J., Baquiast, J.-P. (eds.) Expert Systems in Public Administration, pp. 145–160. Elsevier Science Publishers, North Holland (1989)Google Scholar
  6. 6.
    Pawlak, Z.: Some issues on rough sets. Transaction on Rough Sets 1, 1–58 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Pawlak, Z., Skowron, A.: A rough set approach for decision rules generation. In: Thirteenth International Joint Conference on Artificial Intelligence IJCAI, Chambéry, France, pp. 114–119. Morgan Kaufmann (1993)Google Scholar
  8. 8.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge (2000)Google Scholar
  10. 10.
    Siegel, S., Castellan, N.J.: Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York (1988)Google Scholar
  11. 11.
    Strömbergsson, H., Prusis, P., Midelfart, H., Wikberg, J.E.S., Komorowski, J.: Proteochemometrics Modeling of Receptor-Ligand Interactions Using Rough Sets. In: Proc. of German Conference on Bioinformatics 2004 (GCB 2004), Bielefeld, Germany, October 4-6. LNI, vol. 53, pp. 85–94. GI (2004)Google Scholar
  12. 12.
    Wojna, A.: Analogy-Based Reasoning in Classifier Construction. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 277–374. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sinh Hoa Nguyen
    • 1
    • 2
  • Hung Son Nguyen
    • 1
  1. 1.Institute of MathematicsWarsaw UniversityWarsawPoland
  2. 2.Polish-Japanese Institute of Information TechnologyWarszawaPoland

Personalised recommendations