Skip to main content

Dynamic Quantification of Process Parameters in Viscose Production with Evolving Fuzzy Systems

  • Conference paper
Advances on Computational Intelligence (IPMU 2012)

Abstract

In viscose production, it is important to monitor three process parameters as part of the spin-bath in order to assure a high quality of the final product: the concentrations of H 2 SO 4, Na 2 SO 4 and ZnSO 4. During on-line production these process parameters usually show a quite high dynamics depending on the fibre type that is produced. Thus, conventional chemometric models, kept fixed during the whole life-time of the on-line process, show a quite imprecise and unreliable behavior when predicting the concentrations of new on-line data. In this paper, we are demonstrating evolving chemometric models based on TS fuzzy systems architecture, which are able to adapt automatically to varying process dynamics by updating their inner structures and parameters in a single-pass incremental manner. Gradual forgetting mechanisms are necessary in order to out-date older learned relations and to account for more flexibility and spontaneity of the models. The results show that our dynamic approach is able to overcome the huge prediction errors produced by various state-of-the-art static chemometric models, which could be verified on data recorded on-line over a three months period.

This work was funded by the Austrian research funding association (FFG) under the scope of the COMET programme within the research network ’Process Analytical Chemistry (PAC)’ (contract # 825340). This publication reflects only the authors’ views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backer, S.D., Scheunders, P.: Texture segmentation by frequency-sensitive elliptical competitive learning. Image and Vision Computing 19(9-10), 639–648 (2001)

    Article  Google Scholar 

  2. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis. Journal of Machine Learning Research 11, 1601–1604 (2010)

    Google Scholar 

  3. Brereton, R.: Chemometrics: Data Analysis for the Laboratory and Chemical Plant. John Wiley & Sons, Hoboken (2003)

    Google Scholar 

  4. Cernuda, C., Lughofer, E., Maerzinger, W., Kasberger, J.: NIR-based quantification of process parameters in polyetheracrylat (PEA) production using flexible non-linear fuzzy systems. Chemometrics and Intelligent Laboratory Systems 109(1), 22–33 (2011)

    Article  Google Scholar 

  5. Cleveland, W., Devlin, S.: Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association 84(403), 596–610 (1988)

    Article  Google Scholar 

  6. Draper, N., Smith, H.: Applied regression analysis. Wiley Interscience, Hoboken (1998)

    MATH  Google Scholar 

  7. Haavisto, O., Hyotyniemi, H.: Recursive multimodel partial least squares estimation of mineral flotation slurry contents using optical reflectance spectra. Analytica Chimica Acta 642, 102–109 (2009)

    Article  Google Scholar 

  8. Haenlein, M., Kaplan, A.: A beginner’s guide to partial least squares (PLS) analysis. Understanding Statistics 3(4), 283–297 (2004)

    Article  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: Regularized paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1) (2010)

    Google Scholar 

  11. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1999)

    Google Scholar 

  12. Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  13. Ljung, L.: System Identification: Theory for the User. Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey (1999)

    Google Scholar 

  14. Lughofer, E.: Extensions of vector quantization for incremental clustering. Pattern Recognition 41(3), 995–1011 (2008)

    Article  MATH  Google Scholar 

  15. Lughofer, E.: FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models. IEEE Transactions on Fuzzy Systems 16(6), 1393–1410 (2008)

    Article  Google Scholar 

  16. Lughofer, E.: Evolving Fuzzy Systems — Methodologies, Advanced Concepts and Applications. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  17. Lughofer, E., Bouchot, J.L., Shaker, A.: On-line elimination of local redundancies in evolving fuzzy systems. Evolving Systems 2(3), 165–187 (2011)

    Article  Google Scholar 

  18. Næs, T., Martens, H.: Principal component regression in NIR analysis: Viewpoints, background details and selection of components. Journal of Chemometrics 2(2), 155–167 (1988)

    Article  Google Scholar 

  19. Pomerantsev, A.: Acceptance areas for multivariate classification derived by projection methods. Journal of Chemometrics 22, 601–609 (2008)

    Article  Google Scholar 

  20. Shao, X., Bian, X., Cai, W.: An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Analytica Chimica Acta 666(1-2), 32–37 (2010)

    Article  Google Scholar 

  21. Varmuza, K., Filzmoser, P.: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  22. Wang, L., Mendel, J.: Fuzzy basis functions, universal approximation and orthogonal least-squares learning. IEEE Transactions on Neural Networks 3(5), 807–814 (1992)

    Article  Google Scholar 

  23. Yager, R.R.: A model of participatory learning. IEEE Transactions on Systems, Man and Cybernetics 20(5), 1229–1234 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cernuda, C. et al. (2012). Dynamic Quantification of Process Parameters in Viscose Production with Evolving Fuzzy Systems. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances on Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31709-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31709-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31708-8

  • Online ISBN: 978-3-642-31709-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics