Advertisement

Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification

  • John D. Jakeman
  • Stephen G. Roberts
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 88)

Abstract

In this paper we present a stochastic collocation method for quantifying uncertainty in models with large numbers of uncertain inputs and non-smooth input-output maps. The proposed algorithm combines the strengths of dimension adaptivity and hierarchical surplus guided local adaptivity to facilitate computationally efficient approximation of models with bifurcations/discontinuties in high-dimensional input spaces. A comparison is made against two existing stochastic collocation methods and found, in the cases tested, to significantly reduce the number of model evaluations needed to construct an accurate surrogate model. The proposed method is then used to quantify uncertainty in a model of flow through porous media with an unknown permeability field. A Karhunen–Loève expansion is used to parameterize the uncertainty and the resulting mean and variance in the speed of the fluid and the time dependent saturation front are computed.

Keywords

Sparse Grid Error Indicator Permeability Field Stochastic Collocation Grid Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Jaideep Ray of Sandia National Laboratories, Livermore, CA, USA for providing us with the model discussed in Sect. 6.1.

References

  1. 1.
    I.M. Babuska, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Journal on Numerical Analysis, 45(3):1005–1034, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    I.M. Babuska, R. Tempone, and G.E. Zouraris. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM Journal on Numerical Analysis, 42(2):800–825, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse grids. Advances in Computational Mathematics, 12:273–288, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    H.-J. Bungartz. Finite elements of higher order on sparse grids. PhD thesis, Institut für Informatik, TU München, 1998.Google Scholar
  5. 5.
    H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica, 13:147, June 2004.Google Scholar
  7. 7.
    B. Ganapathysubramanian and N. Zabaras. Sparse grid collocation schemes for stochastic natural convection problems. Journal of Computational Physics, 225(1):652–685, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numerical Algorithms, 18(3–4):209–232, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    T Gerstner and M Griebel. Dimension–adaptive tensor–product quadrature. Computing, 71(1):65–87, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    R.G. Ghanem and P.D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag New York, Inc., New York, NY, USA, 1991.zbMATHCrossRefGoogle Scholar
  11. 11.
    M. Griebel. Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing, 61(2):151–179, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    M. Griebel and M. Holtz. Dimension-wise integration of high-dimensional functions with applications to finance. Journal of Complexity, 26(5):455–489, 2010. SI: HDA 2009.Google Scholar
  13. 13.
    M Hegland. Adaptive sparse grids. Anziam Journal, 44(April):335–353, 2003.MathSciNetGoogle Scholar
  14. 14.
    J.D. Jakeman, M. Eldred, and D. Xiu. Numerical approach for quantification of epistemic uncertainty. Journal of Computational Physics, 229(12):4648–4663, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    J.D. Jakeman and S.G. Roberts. Local and dimension adaptive sparse grid interpolation and quadrature. Pre-print, 2011. arXiv:1110.0010v1 [math.NA].Google Scholar
  16. 16.
    O.M. Knio and O.P. Le Maitre. Uncertainty propagation in CFD using Polynomial Chaos decomposition. Fluid Dynamics Research, 38(9):616–640, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    X. Ma and N. Zabaras. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. Journal of Computational Physics, 228:3084–3113, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    X. Ma and N. Zabaras. An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. Journal of Computational Physics, 229(10):3884–3915, May 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    L. Mathelin, M. Hussaini, and T. Zang. Stochastic approaches to uncertainty quantification in CFD simulations. Numerical Algorithms, 38(1–3):209–236, MAR 2005.Google Scholar
  20. 20.
    M.G. Morgan and M. Henrion. Uncertainty: a Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge University Press, New York, 1990.CrossRefGoogle Scholar
  21. 21.
    F. Nobile, R. Tempone, and C.G. Webster. An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM Journal on Numerical Analysis, 46(5):2411–2442, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    F. Nobile, R. Tempone, and C.G. Webster. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM Journal on Numerical Analysis, 46(5):2309–2345, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    M. Tatang, W. Pan, R. Prinn, and G. McRae. An efficient method for parametric uncertainty analysis of numerical geophysical model. Journal of Geophysical Research, 102(D18):21925–21932, 1997.CrossRefGoogle Scholar
  24. 24.
    O.V. Vasilyev and S. Paolucci. A fast adaptive wavelet collocation algorithm for multidimensional PDEs. Journal of Computational Physics, 138:16–56, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, 2010.Google Scholar
  26. 26.
    D. Xiu and J.S. Hesthaven. High-order collocation methods for differential equations with random inputs. SIAM Journal on Scientific Computing, 27(3):1118–1139, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Dongbin Xiu and George Em Karniadakis. The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2):619, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia

Personalised recommendations