Skip to main content

The Combination Technique for the Initial Value Problem in Linear Gyrokinetics

  • Conference paper
  • First Online:
Sparse Grids and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 88))

Abstract

The simulation of hot fusion plasmas via the five-dimensional gyrokinetic equations is computationally intensive with one reason being the curse of dimensionality. Using the sparse grid combination technique could reduce the computational effort. For the computation of the full grid solutions, the plasma turbulence code GENE is used. It is shown that the combination technique is applicable to linear gyrokinetics by retrieving combination coefficients with a least squares approach. The retrieved sparse grid solution is actually close to the full grid one. Also, combination schemes were found which provided promising results with respect to the computational effort and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://gene.rzg.mpg.de

References

  1. Beer, M., Cowley, S., Hammett, G.: Field-aligned coordinates for nonlinear simulations of tokamak turbulence. Physics of Plasmas 2(7), 2687 (1995)

    Article  Google Scholar 

  2. Brizard, A., Hahm, T.: Foundations of nonlinear gyrokinetic theory. Reviews of modern physics 79(2), 421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  4. Cohen, B., Williams, T., Dimits, A., Byers, J.: Gyrokinetic simulations of E ×B velocity-shear effects on ion-temperature-gradient modes. Physics of Fluids B: Plasma Physics 5, 2967 (1993)

    Article  Google Scholar 

  5. Dannert, T.: Gyrokinetische Simulation von Plasmaturbulenz mit gefangenen Teilchen und elektromagnetischen Effektien. Ph.D. thesis, Technische Universität München (2005)

    Google Scholar 

  6. Dannert, T., Jenko, F.: Gyrokinetic simulation of collisionless trapped-electron mode turbulence. Physics of Plasmas 12, 072,309 (2005)

    Article  Google Scholar 

  7. Garcke, J.: A dimension adaptive sparse grid combination technique for machine learning. In: W. Read, J.W. Larson, A.J. Roberts (eds.) Proceedings of the 13th Biennial Computational Techniques and Applications Conference, CTAC-2006, ANZIAM J., vol. 48, pp. C725–C740 (2007)

    Google Scholar 

  8. Garcke, J.: An optimised sparse grid combination technique for eigenproblems. In: Proceedings of ICIAM 2007, PAMM, vol. 7, pp. 1022,301–1022,302 (2008)

    Google Scholar 

  9. Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. Journal of Computational Physics 165(2), 694–716 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garcke, J., Griebel, M.: Classification with sparse grids using simplicial basis functions. Intelligent Data Analysis 6(6), 483–502 (2002)

    MATH  Google Scholar 

  11. Görler, T.: Multiscale effects in plasma microturbulence. Ph.D. thesis, Universität Ulm (2009)

    Google Scholar 

  12. Görler, T., Lapillonne, X., Brunner, S., Dannert, T., Jenko, F., Merz, F., Told, D.: The global version of the gyrokinetic turbulence code GENE. Journal of Computational Physics 230(18), 7053–7071 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Griebel, M., Huber, W.: Turbulence simulation on sparse grids using the combination method. In: N. Satofuka, J. Periaux, A. Ecer (eds.) Parallel Computational Fluid Dynamics, New Algorithms and Applications, pp. 75–84. North-Holland, Elsevier (1995)

    Google Scholar 

  14. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: P. de Groen, R. Beauwens (eds.) Iterative Methods in Linear Algebra, pp. 263–281. IMACS, Elsevier, North Holland (1992). Also as SFB Bericht, 342/19/90 A, Institut für Informatik, TU München, 1990

    Google Scholar 

  15. Hegland, M.: Adaptive sparse grids. In: K. Burrage, R.B. Sidje (eds.) Proc. of 10th Computational Techniques and Applications Conference CTAC-2001, vol. 44, pp. C335–C353 (2003)

    Google Scholar 

  16. Hegland, M., Garcke, J., Challis, V.: The combination technique and some generalisations. Linear Algebra and its Applications 420(2–3), 249–275 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kammerer, M., Merz, F., Jenko, F.: Exceptional points in linear gyrokinetics. Physics of Plasmas 15, 052,102 (2008)

    Article  Google Scholar 

  18. Lapillonne, X., Brunner, S., Sauter, O., Villard, L., Fable, E., Görler, T., Jenko, F., Merz, F.: Non-linear gyrokinetic simulations of microturbulence in tcv electron internal transport barriers. Plasma Physics and Controlled Fusion 53, 054,011 (2011)

    Article  Google Scholar 

  19. Lederer, H., Tisma, R., Hatzky, R., Bottino, A., Jenko, F.: Application enabling in DEISA: Petascaling of plasma turbulence codes. Parallel Computing: Architectures, Algorithms and Applications 38, 713–720 (2008)

    Google Scholar 

  20. Liu, F., Zhou, A.: Two-scale finite element discretizations for partial differential equations. J. Comput. Math 24(3), 373–392 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Merz, F.: Gyrokinetic simulation of multimode plasma turbulence. Ph.D. thesis, Universität Münster (2009)

    Google Scholar 

  22. Merz, F., Kowitz, C., Romero, E., Roman, J., Jenko, F.: Multi-dimensional gyrokinetic parameter studies based on eigenvalue computations. Computer Physics Communications 1, 1–9 (2011)

    Google Scholar 

  23. Roman, J.E., Kammerer, M., Merz, F., Jenko, F.: Fast eigenvalue calculations in a massively parallel plasma turbulence code. Parallel Computing 36(5–6), 339–358 (2010). Parallel Matrix Algorithms and Applications

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kowitz, C., Pflüger, D., Jenko, F., Hegland, M. (2012). The Combination Technique for the Initial Value Problem in Linear Gyrokinetics. In: Garcke, J., Griebel, M. (eds) Sparse Grids and Applications. Lecture Notes in Computational Science and Engineering, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31703-3_10

Download citation

Publish with us

Policies and ethics