Advertisement

Tribology in Hot Rolling of Steel Strip

  • D. B. Wei
  • Z. Y. Jiang
Chapter
Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

Contact friction is of crucial importance for accurate simulation, optimum design and control of industrial rolling processes. It affects the shape, profile, dimensional accuracy and surface quality of hot rolled strips. This chapter focuses on the tribology of hot strip rolling of plain carbon steel and stainless steel, which is significantly affected by oxide scales. The fundamental of oxidation of pure iron, plain carbon steel and stainless steel, and the formation of oxide scales in hot rolling process have been discussed. The morphology of the oxide scales and their deformation behaviours that depend on oxide scale thickness, constitution and the rolling parameters have been disclosed. Surface roughness of oxide scales and the tribological effect of oxide scales in hot strip rolling have been studied. A multi oxide scale layers simulation has been established to study the deformation and fracture of oxide scales taking into account the effect of surface roughness.

Keywords

Oxide Scale Ferritic Stainless Steel Rolling Reduction Plain Carbon Steel Interfacial Heat Transfer Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Torresa M, Colas R (2000) J Mater Process Technol 105:258–263CrossRefGoogle Scholar
  2. 2.
    Luong LH, Heijkoop T (1981) Wear 71:93–102CrossRefGoogle Scholar
  3. 3.
    Li YH, Krzyzanowski M, Beynon JH, Sellars CM (2000) Acta Metall Sin 13:359–368Google Scholar
  4. 4.
    Beynon JH, Li YH, Krzyzanowski M, Sellars CM (2000) In: Pietrzk, Kusiak J, Majta J, Hartley P and Pillinger I (eds) Metal forming, Balkema, Rotterma, pp 3–10Google Scholar
  5. 5.
    Krzyzanowski M, Beynon JH (2000) Modell Simul Mater Sci Eng 8:927–945CrossRefGoogle Scholar
  6. 6.
    Krzyzanowski M, Beynon JH, Sellars CM (2000) Metall Mater Trans 31B:1483–1490Google Scholar
  7. 7.
    Krzyzanowski M, Beynon JH (1999) Steel Res 70:22–27Google Scholar
  8. 8.
    Chen RY, Yuen WYD, Mak T (2001) In Proceedings of the 43rd MWSP conference, ISS, vol XXXIX, pp 287–299Google Scholar
  9. 9.
    Yu Y, Lenard JG (2002) J Mater Process Technol 121:60–68CrossRefGoogle Scholar
  10. 10.
    Li YH, Sellars CM (1996) In: Beynon JH, Ingham P, Teichert H and Waterson K (eds) Proceedings of the 2nd international conference on modelling of metal rolling processes, London, pp 192–206Google Scholar
  11. 11.
    Munther PA, Lenard JG (1999) J Mater Process Technol 88:105–113CrossRefGoogle Scholar
  12. 12.
    Krzyzanowski M, Beynon JH (2006) ISIJ Int 46:1533–1547CrossRefGoogle Scholar
  13. 13.
    Chen RY, Yuen WYD (2003) Oxid Met 59:433–468CrossRefGoogle Scholar
  14. 14.
    Ajersch F (1993) In Proceedings of the 34th MWSP conference, ISS-AIME 30, pp 419–437Google Scholar
  15. 15.
    Paidassi J (1958) Acta Metall 6:184–194CrossRefGoogle Scholar
  16. 16.
    Bertrand N, Desgranges C, Gauvain D, Monceau D, Poquillon D (2004) Mater Sci Forum 461–464:591–598CrossRefGoogle Scholar
  17. 17.
    Singh Raman RK, Gleeson, Young DJ (1996). In Proceedings of the 13th international conference on corrosion, Australia, paper 297Google Scholar
  18. 18.
    Abuluwefa H, Guthrie RIL, Ajersch F (1996) Oxid Met 46:423CrossRefGoogle Scholar
  19. 19.
    Chen RY, Yuen WYD (2002) Oxid Met 57:53–79CrossRefGoogle Scholar
  20. 20.
    Evans HE (1988) Mater Sci Technol 4:1089CrossRefGoogle Scholar
  21. 21.
    Mark R (2001) Wire industry, 68, p 503 Google Scholar
  22. 22.
    Capitan MJ, Lefebvre S, Traverse A, Paul A, Odriozolac JA (1998) J Mater Chem 8:2293–2298CrossRefGoogle Scholar
  23. 23.
    Riffard F, Buscail H, Caudron E, Cueff R, Issartel C, Perrier S (2004) Surf Eng 20:440–446CrossRefGoogle Scholar
  24. 24.
    Riffard F, Buscail H, Caudron E, Cueff R, Issartel C, Perrier S (2002) Mater Charact 49:55–65CrossRefGoogle Scholar
  25. 25.
    Riffard F, Buscail H, Caudron E, Cueff R (2001) In: Sudarshan TS, Jeandin M (eds) Surface modification technologies XIV, ASM international, materials park. Ohio and IOM Communications Ltd., UK, pp 526–529Google Scholar
  26. 26.
    Jonsson T, Canovic S, Liu F, Asteman H, Svensson J-E, Johansson L-G, Halvarsson M (2005) Materials at high temperature 22:231–243CrossRefGoogle Scholar
  27. 27.
    Asteman H, Svensson J-E, Johansson L-G (2002) Oxid Met 57:193–216CrossRefGoogle Scholar
  28. 28.
    Asteman H, Svensson J-E, Johansson L-G, Norell M (1999) Oxid Met 52:95–111CrossRefGoogle Scholar
  29. 29.
    Asteman H, Svensson J-E, Norell M, Johansson L-G (2000) Oxid Met 54:11–26CrossRefGoogle Scholar
  30. 30.
    Asteman H, Segerdahl K, Svensson JE, Johansson LG (2001) Mater Sci Forum 369–372:277–286CrossRefGoogle Scholar
  31. 31.
    Tang JE (2001) Micron 32:799–805CrossRefGoogle Scholar
  32. 32.
    Honda Katsuya, Maruyama Toshio, Atake Tooru, Saito Yasutoshi (1992) Oxid Met 38:347–363CrossRefGoogle Scholar
  33. 33.
    Ishida Toshihisa, Harayama Yasuo, Yaguchi Sinnosuke (1986) J Nucl Mater 140:74–84CrossRefGoogle Scholar
  34. 34.
    Cheng Shen-Yuan, Kuan Sheng-Lih, Tsai Wen-Ta (2006) Corros Sci 48:634–649CrossRefGoogle Scholar
  35. 35.
    Amy S, Vangeli P (2001) In: EUROCORR 2001 (The European Corrosion Congress), Lake Garda, Italy, 2001, 13-25Google Scholar
  36. 36.
    Huntz AM, Reckmanna A, Haut C, Severac C, Herbst M, Resende FCT, Sabioni ACS (2007) Mater Sci Eng, A 447:266–276CrossRefGoogle Scholar
  37. 37.
    Lee YD, Lee YH, Lee JS, Kim JK (1991) In Proceedings of the international conference on stainless steels. Chiba, ISIJ, pp 952–958Google Scholar
  38. 38.
    Sun WH, Tieu AK, Jiang ZY, Zhu H, Lu C (2003) J Mater Process Technol 140:76–83CrossRefGoogle Scholar
  39. 39.
    Sun WH, Tieu AK, Jiang ZY, Zhu H, Lu C (2004) J Mater Process Technol 155–156:1300–1306CrossRefGoogle Scholar
  40. 40.
    Jiang ZY, Tieu AK, Sun WH, Tang JN, Wei DB (2006) Mater Sci Eng A 435–436:434–438Google Scholar
  41. 41.
    Perez FJ, Cristobal MJ, Arnau G, Hierro MP, Saura JJ (2001) Oxid Met 55:105–118CrossRefGoogle Scholar
  42. 42.
    Echsler H, Ito S, Schutze M (2003) Oxid Met 60:241–269CrossRefGoogle Scholar
  43. 43.
    Chen RY, Yuen WYD (2000) Oxid Met 53:539–560CrossRefGoogle Scholar
  44. 44.
    Chen RY, Yuen WYD (2001) Oxid Met 56:89–118CrossRefGoogle Scholar
  45. 45.
    Fernando LA, Zaremski DR (1988) Metall Trans A 19:1083–1100CrossRefGoogle Scholar
  46. 46.
    Lundberg S-E, Gustafsson T (1994) J Mater Process Technol 42:239–291CrossRefGoogle Scholar
  47. 47.
    Krzyzanowski M, Beynon JH (2002) J Mater Process Technol 125–126:398–404CrossRefGoogle Scholar
  48. 48.
    Hidaka Y, Anraku T, Otsuka N (2001) Mater Sci Forum 369–372:555–562CrossRefGoogle Scholar
  49. 49.
    Riedel H (1982) Mater Sci 16:569–574Google Scholar
  50. 50.
    Hancook P, Nicholls JR (1988) Mater Sci Technol 4:398–406CrossRefGoogle Scholar
  51. 51.
    Schutze M (2005) Materials at high temperature 22:147–154CrossRefGoogle Scholar
  52. 52.
    Fletcher JD, Beynon JH (1996) In Proceedings of the second international conference on modelling of metal rolling processes, London, 202–212Google Scholar
  53. 53.
    Li YH, Sellars CM (1996) Ironmaking steelmaking 23:58–61Google Scholar
  54. 54.
    Li YH, Sellars CM (1999) Advanced technology of plasticity. In Proceedings of the 6th ICTP, vol III, 1973–1978Google Scholar
  55. 55.
    Jarl M (1993) In Proceedings of the first international conference on modelling of metal rolling processes. UK, London, pp 614–628Google Scholar
  56. 56.
    Sun WH, Tieu AK, Jiang ZY, Lu C (2004) J Mater Process Technol 155–156:1307–1312CrossRefGoogle Scholar
  57. 57.
    Sun WH, Tieu AK, Jiang ZY, Zhu H (2004) Key Eng Mater 274–276:511–516CrossRefGoogle Scholar
  58. 58.
    Tang J, Tieu AK, Jiang ZY (2006) J Mater Process Technol 177:126–129CrossRefGoogle Scholar
  59. 59.
    Tang J, Tieu AK, Jiang ZY (2004) Key Eng Mater 274–276:499–504CrossRefGoogle Scholar
  60. 60.
    Tan KS, Krzyzanowski M, Beynon JH (2001) Steel Res 72:250–257Google Scholar
  61. 61.
    Krzyzanowski M, Beynon JH (1999) Mater Sci Technol 15:1191–1198Google Scholar
  62. 62.
    Krzyzanowski M, Beynon JH (1999) In Proceedings of the third international conference on modelling of metal rolling processes, London, 360–369Google Scholar
  63. 63.
    Beynon JH, Krzyzanowski M (2005) Mater Forum 29:39–46Google Scholar
  64. 64.
    Krzyzanowsky M, Beynon JH, Frolish MF, Clowe S (2007) Mater Sci Forum 539–543:2461–2466CrossRefGoogle Scholar
  65. 65.
    Wei DB, Huang JX, Zhang AW, Jiang ZY, Tieu AK, Shi X, Jiao SH (2010) Friction, surface roughness and oxide scale deformation during hot rolling of stainless steels. In proceedings of the 10th international conference on steel rolling, Beijing, China, 15–17Google Scholar
  66. 66.
    Wei DB, Huang JX, Zhang AW, Jiang ZY, Tieu AK, Shi X, Jiao SH (2009) Int J Surf Sci Eng 3(5–6):459–470CrossRefGoogle Scholar
  67. 67.
    Rudkins NT, Hartley P, Pillinger I, Petty D (1996) J Mater Process Technol 60:349–353CrossRefGoogle Scholar
  68. 68.
    Das S, Palmiere EJ, Howard IC (2001) Mater Sci Technol 17:864–873CrossRefGoogle Scholar
  69. 69.
    Hum B, Colquhoun HW, Lenard JG (1996) J Mater Process Technol 60:331–338CrossRefGoogle Scholar
  70. 70.
    Lagergren J (1997) J Mater Process Technol 70:207–214CrossRefGoogle Scholar
  71. 71.
    Lundberg S-E (2004) Scandinavian J Metall 33:129-145Google Scholar
  72. 72.
    Li YH, Beynon JH, Sellars CM (1999) Advanced technology of plasticity. In Proceedings of the 6th ICTP, vol III, 2023–2028Google Scholar
  73. 73.
    Heshmat H, Godet M, Berthier Y (1995) Lubr Eng 51:557–564Google Scholar
  74. 74.
    A.K.E.H.A. El-Kalay, Sparling LGM (1968) J Iron and Steel Inst 43:152-168Google Scholar
  75. 75.
    Fedorciuc-Onisa C, Farrugia DCJ (2003) In: Brucato V (eds) The 6th ESAFORM conference on material forming, 763–766Google Scholar
  76. 76.
    Vergne C, Boher C, Levaillant C, Gras R (2001) Wear 250:322–333CrossRefGoogle Scholar
  77. 77.
    Alexander JM, Brewer RC, Rowe GW (1987) Manufacturing technology, Vol 2: engineering processes. Ellis Horwood Ltd. Published, West SussexGoogle Scholar
  78. 78.
    Wei DB, Huang JX, Zhang AW, Jiang ZY, Tieu AK, Wu F, Shi X, Jiao SH, Chen L (2010) Steel Res Int 81(9):102–105Google Scholar
  79. 79.
    Wei DB, Huang JX, Zhang AW, Jiang ZY, Tieu AK, Shi X, Jiao SH (2011) Wear 271(9–10):2417–2425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Mechanical, Materials and Mechatronic EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations