Skip to main content

Tribology of Machining

  • Chapter
  • First Online:
Book cover Tribology in Manufacturing Technology

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

The chapter focuses on the tribological interactions in the area of machining and grinding and details the frictional interactions at the chip-tool interface. The chapter then discusses cutting, ploughing and sliding interaction models that are generally applied to the actions of cutting tools and provides solutions to reducing these interactions using solid and liquid lubricants. The authors intend to provide an understanding to readers of the chapter to design better processes for machining difficult-to-machine materials used in industry at large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackroyd B (1999) Ph.d. Thesis, School of Industrial Engineering, Purdue University, West Lafayette, Indiana

    Google Scholar 

  2. Akhmatov AS (1939) Some items in the investigation of the external friction of solids, Trudy Stankina; cited by I. V. Kragelski (1965) in Friction and Wear. Butterworths, London, p 159

    Google Scholar 

  3. Baglin JEE, Gottschall RJ, Batich CD (1987) Materials Research Society, Pittsburgh, pp 81–86

    Google Scholar 

  4. Bednar MS, Cai BC, Kuhlmann-Wilsdorf D (1993) Pressure and structure dependence of solid lubrication. Lub. Eng. 49(10):741–749

    CAS  Google Scholar 

  5. Bisson ΕΕ, Anderson WJ (1964) Advanced bearing technology, NASA SP-38. National Aeronautics and Space Administration, Washington

    Google Scholar 

  6. Black PH (1961) Theory of Metal Cutting. McGraw-Hill, New York, pp 45–72

    Google Scholar 

  7. Blok H (1963) The flash temperature concept. Wear 6:483–494

    Article  Google Scholar 

  8. Boehringer RH (1992) Grease, in ASM handbook, friction, lubrication, and wear technology, ASM International, Materials Park Ohio, 10th edn, vol 18, pp 123–131

    Google Scholar 

  9. Bowden FP, Tabor D (1986) The Friction and Lubrication of Solids. Clarendon Press, Oxford

    Google Scholar 

  10. Briscoe BJ (1992) Friction of organic polymers. In: Singer IL, Pollock HM (eds) Fundamentals of friction: macroscopic and microscopic processes. Kluwer, Dordrecht, pp 167–182

    Google Scholar 

  11. Briscoe BJ, Stolarski TA (1993) Friction, chapter 3 in characterization of tribological materials. In: Glaeser WA, Butterworth Heinemann, Boston, pp 48–51

    Google Scholar 

  12. Buckley DF (1981) Surface effects in adhesion friction, wear, and lubrication,chapter5. Elsevier, New York, pp 245–313

    Google Scholar 

  13. Burton RA (1980) Thermal deformation in frictionally-heated systems. Elsevier, Lausanne, p 290

    Google Scholar 

  14. Campbell WE (1940) Remarks printed in proceedings of MIT conference on friction and surface finish. MIT Press, Cambridge, p 197

    Google Scholar 

  15. Cowan RS, Winer WO (1992). Frictional heating calculations, in ASM Hand-book. Friction, lubrication, and wear technology, ASM International, Materials Park, Ohio, 10th edn, vol 18, pp 39–44

    Google Scholar 

  16. Dow TA, Stockwell RD (1977) Experimental verification of thermoelastic instabilities in sliding contact. J Lubric Technol 99(3):359

    Article  Google Scholar 

  17. Doyle ED, Horne JG, Tabor D (1979) Frictional interactions between chip and rake face in continuous chip formation. Proc Roy Soc London A 366:173–187

    Article  CAS  Google Scholar 

  18. Enthoven JC, Cann PM, Spikes HA (1993) Temperature and scuffing. Tribol Trans 36(2):258–266

    Article  CAS  Google Scholar 

  19. Ferrante J, Bozzolo GH, Finley CW, Banerjea A (1988). Interfacial adhesion: theory and experiment. In: Mattox DM, Baglin JΕΕ, Gottschall RJ, Batich CD (eds) Adhesion in solids, Materials Research Society, Pittsburgh, pp 3–16

    Google Scholar 

  20. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc Roy Soc London A 295:300–319

    Article  CAS  Google Scholar 

  21. Greenwood JA (1992) Problems with surface roughness. In: Singer IL,. Pollock HM, Fundamentals of friction: macroscopic and microscopic processes, Kluwer, Dordrecht, pp 57–76

    Google Scholar 

  22. Griffioen JA, Bair S, Winer WO (1985). Infrared surface temperature in a sliding ceramic-ceramic contact. In: Dowson D et al. (eds)Mechanisms of surface distress, Butterworths, London, pp 238–245

    Google Scholar 

  23. Glaeser WA, Dufrane KF (1978) New design methods for boundary lubricated sleeve bearings. Machine design, pp 207–213

    Google Scholar 

  24. Hall AS, Holowenko AR, Laughlin HG (1961) Lubrication and bearing design, in machine design schaum’s outline series. McGraw-Hill, New York, p 279

    Google Scholar 

  25. Hirst W, Hollander AE (1974) Surface finish and damage in sliding. Proc Roy Soc London A 233:379

    Google Scholar 

  26. Hokkirigawa K, Kato K (1988) An experimental and theoretical investigation of ploughing, cutting and wedge formation during abrasive wear. Tribol Int 21(1):51–57

    Article  CAS  Google Scholar 

  27. Horne JG, Doyle ED, Tabor D (1978) Direct observation of the contact and lubrication at the chip-tool interface. In: Proceedings of the first international conference on lubrication challenges in metalworking and processing, IIT Research Institute, Chicago

    Google Scholar 

  28. Hutchings IM (1992) Tribology—friction and wear of engineering materials. CRC Press, Boca Raton, p 65

    Google Scholar 

  29. Hwang J (2005) Ph.d. thesis, School of Industrial Engineering, Purdue University, West Lafayette, Indiana

    Google Scholar 

  30. Israelachvili JN (1992)\ Adhesion, friction, and lubrication of molecularly smooth surfaces. In: Pollock HM, Singer IL (eds) Fundamentals of friction: macroscopic and microscopic processes, Kluwer, Dordrecht, pp 351–381

    Google Scholar 

  31. Jackson MJ, Morrell JS (2011) Tribology in manufacturing, chapter 5. In: Davim J (ed) Tribology for engineers: a practical guide, Woodhead Publishing, Cambridge, pp 161–242

    Google Scholar 

  32. Jaeger JC (1942) Moving sources of heat and the temperature at sliding contacts. J. Proc. Royal Soc. N. South Wales, 76:203–224

    Google Scholar 

  33. Klaus EE, Tewksbury EJ (1984) Liquid lubricants. In: Booser ER (ed) The handbook of lubrication, theory and practice of tribology, vol II, CRC Press, Boca Raton, pp 229–254

    Google Scholar 

  34. Kosterin JI, Kraghelski IV (1962) Rheological phenomena in dry friction. Wear 5:190–197

    Article  Google Scholar 

  35. Kragelski IV (1965) Friction and wear. Butterworths, London, p 200

    Google Scholar 

  36. Kragelskii IV, Dobychin MN, Kombalov VS (1982) Friction and wear calculation methods. Pergamon Press, Oxford, pp 178–180

    Google Scholar 

  37. Kudinov VA, Tolstoy DM (1986). Friction and oscillations. In: Kragelski (ed)Tribology handbook, Mir, Moscow, p 122

    Google Scholar 

  38. Kuhlmann-Wilsdorf D (1987) Demystifying flash temperatures I. analytical expressions based on a simple model. Mater Sci Eng 93:107–117

    Article  CAS  Google Scholar 

  39. Landman U, Luetke WD, Burnham NA, Colton RJ (1990) Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248:454–461

    Article  CAS  Google Scholar 

  40. Lee S (2006), Ph.d. thesis, School of Industrial Engineering, Purdue University, West Lafayette, Indiana

    Google Scholar 

  41. McClelland GM, Mate CM, Erlandsson R, Chiang S (1988). Direct observation of friction at the atomic scale. In: Mattox DM, Baglin JEE, Gottschall RJ, Batich CD (eds) Adhesion in solids, Materials Research Society, Pittsburgh, pp 81–86

    Google Scholar 

  42. McClelland GM, Mate CM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59:1942

    Article  Google Scholar 

  43. McCool J (1986) Comparison of models for the contact of rough surfaces. Wear 107:37–60

    Article  Google Scholar 

  44. Madhavan V (1993) M.S. Thesis, School of Industrial Engineering, Purdue University, West Lafayette, Indiana

    Google Scholar 

  45. Miyoshi K, Buckley DH (1981) Anisotropic tribological properties of silicon carbide. In: Proceedings of wear of the materials, ASME, New York, pp 502–509

    Google Scholar 

  46. Moore DF (1975) Principles and applications of tribology. Pergamon Press, Oxford, p 152

    Google Scholar 

  47. Mulhearn TO, Samuels LE (1962) Wear 5:478

    Article  Google Scholar 

  48. Pollock HM, Singer IL (eds) (1992) Fundamentals of friction: macroscopic and microscopic processes, Kluwer, Dordrecht, pp 621

    Google Scholar 

  49. Quinn TFJ, Winer WO (1987) An experimental study of the ‘hot spots’ occurring during the oxidational wear of tool steel on sapphire. J Tribol 109(2):315–320

    Article  CAS  Google Scholar 

  50. Rabinowicz E (1965) Friction and wear of materials. John Wiley and Sons, New York, p 69

    Google Scholar 

  51. Rabinowicz E (1992) Friction coefficients of noble metals over a range of loads. Wear 159:89–94

    Article  CAS  Google Scholar 

  52. Raimondi AA (1968) Analysis and design of sliding bearings, Chapter 5 in Standard Handbook of Lubrication Engineering. McGraw-Hill, New York

    Google Scholar 

  53. Ramesh KT, Clifton RJ (1987) A pressure-shear plate impact experiment for studying the rheology of lubricants at high pressures and high shear rates. J. Tribal. 109:215–222

    Article  CAS  Google Scholar 

  54. Robbins MO, Thompson PA (1991) The critical velocity of stick-slip motion. Science 253:916

    Article  CAS  Google Scholar 

  55. Robbins MO, Thompson PA, Grest GS (1993) Simulations of nanometer-thick lubricating films Mater Res Soc Bull XVIII(5):45–49

    Google Scholar 

  56. Robinson GM (2007) Ph. d. thesis, College of Technology, Purdue University, West Lafayette, Indiana

    Google Scholar 

  57. Sanchez-Rubio M, Heredia-Veloz A, Puig JE, Gonzalez-Lozano S (1992) A better viscosity-temperature relationship for petroleum products. Lubr Eng 48(10):821–826

    CAS  Google Scholar 

  58. Sikorski ME (1964) The adhesion of metals and factors that influence it. In: Bryant PJ, Lavik L, Salomon G (eds) Mechanisms of solid friction (eds) Elsevier, Amsterdam, pp 144–162

    Google Scholar 

  59. Song JF, Vorburger TV (1992) Surface texture, in ASM handbook,friction, lubrication, and wear technology, ASM International, Materials Park, Ohia, 10th edn, vol 18, pp 334–345

    Google Scholar 

  60. Suh NP (1986) Tribophysics. Prentice-Hall, Englewood Cliffs, pp 416–424

    Google Scholar 

  61. Thompson PA, Robbins MO (1990) Origin of stick-slip motion in boundary lubrication. Science 250:792–794

    Article  CAS  Google Scholar 

  62. Wills JG (1980) Lubrication fundamentals. Marcel Dekker, New York

    Google Scholar 

  63. Wheeler DR (1975) The effect of adsorbed chlorine and oxygen on the shear strength of iron and copper junctions, NASA TN D-7894

    Google Scholar 

  64. Whitehouse DJ, Archard JF (1970) The properties of random surfaces of significance in their contact. Proc Royal Soc London A 316:97–121

    Article  Google Scholar 

  65. Young WC (1989) Roark’s formulas for stress and strain, 6th edn. McGraw-Hill, New York

    Google Scholar 

  66. Bhushan B, Gupta BK (1991) Handbook of tribology, McGraw Hill

    Google Scholar 

  67. Handbook of chemistry and physics(1967). CRC Press, 48th edn, p 3

    Google Scholar 

  68. Rabinowicz E (1971) Plate sliding on inclined plate at 50% rel. humidity ASLE Trans., vol 14, p 198

    Google Scholar 

  69. Friction data guide general magnaplate corp (1988) Ventura, California 93003, TMI model 98-5 slip and friction tester, 200 grams load, ground specimens, 54 % rel. humid. average of 5 tests

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge with thanks the permission to reproduce Sects. 2 and 3 from Woodhead Publishing, Cambridge, UK. The sections were adapted from the publication: M. J. Jackson and J. S. Morrell, ‘Tribology in Manufacturing’, Chapter 5, p.p. 161-242, published in ‘Tribology for Engineers: A Practical Guide’, Edited by J.Davim, Woodhead Publishing, Cambridge, UK, 2011. ISBN 0 85709 114X and ISBN-13: 978 0 85709 114 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackson, M.J., Whitfield, M., Robinson, G.M., Morrell, J., Davim, J.P. (2012). Tribology of Machining . In: Davim, J. (eds) Tribology in Manufacturing Technology. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31683-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31683-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31682-1

  • Online ISBN: 978-3-642-31683-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics