k-Indistinguishable Traffic Padding in Web Applications

  • Wen Ming Liu
  • Lingyu Wang
  • Kui Ren
  • Pengsu Cheng
  • Mourad Debbabi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7384)


While web-based applications are becoming increasingly ubiquitous, they also present new security and privacy challenges. In particular, recent research revealed that many high profile Web applications might cause private user information to leak from encrypted traffic due to side-channel attacks exploiting packet sizes and timing. Moreover, existing solutions, such as random padding and packet-size rounding, are shown to incur prohibitive cost while still not ensuring sufficient privacy protection. In this paper, we propose a novel k-indistinguishable traffic padding technique to achieve the optimal tradeoff between privacy protection and communication and computational cost. Specifically, we first present a formal model of the privacy-preserving traffic padding (PPTP). We then formulate PPTP problems under different application scenarios, analyze their complexity, and design efficient heuristic algorithms. Finally, we confirm the effectiveness and efficiency of our algorithms by comparing them to existing solutions through experiments using real-world Web applications.


Packet Size Privacy Protection Input String Privacy Requirement Differential Privacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Anonymizing Tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 246–258. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Askarov, A., Zhang, D., Myers, A.C.: Predictive black-box mitigation of timing channels. In: CCS 2010, pp. 297–307 (2010)Google Scholar
  3. 3.
    Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE Symposium on Security and Privacy, p. 3 (2004)Google Scholar
  4. 4.
    Backes, M., Doychev, G., Dürmuth, M., Köpf, B.: Speaker Recognition in Encrypted Voice Streams. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 508–523. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bauer, K., McCoy, D., Greenstein, B., Grunwald, D., Sicker, D.: Physical Layer Attacks on Unlinkability in Wireless LANs. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 108–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bilogrevic, I., Jadliwala, M., Kalkan, K., Hubaux, J.-P., Aad, I.: Privacy in Mobile Computing for Location-Sharing-Based Services. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 77–96. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Brumley, D., Boneh, D.: Remote timing attacks are practical. In: USENIX (2003)Google Scholar
  8. 8.
    Castelluccia, C., De Cristofaro, E., Perito, D.: Private Information Disclosure from Web Searches. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 38–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications: A reality today, a challenge tomorrow. In: IEEE Symposium on Security and Privacy 2010, pp. 191–206 (2010)Google Scholar
  10. 10.
    Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: k-anonymous data mining: A survey. In: Privacy-Preserving Data Mining: Models and Algorithms (2008)Google Scholar
  11. 11.
    Danezis, G., Aura, T., Chen, S., Kıcıman, E.: How to Share Your Favourite Search Results while Preserving Privacy and Quality. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 273–290. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent developments. ACM Comput. Surv. 42, 14:1–14:53 (2010)CrossRefGoogle Scholar
  14. 14.
    Kann, V.: Maximum bounded h-matching is max snp-complete. Inf. Process. Lett. 49, 309–318 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 881–892 (2002)CrossRefGoogle Scholar
  16. 16.
    LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient fulldomain k-anonymity. In: SIGMOD, pp. 49–60 (2005)Google Scholar
  17. 17.
    Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE 2007, pp. 106–115 (2007)Google Scholar
  18. 18.
    Liu, W.M., Wang, L., Cheng, P., Debbabi, M.: Privacy-preserving traffic padding in web-based applications. In: WPES 2011, pp. 131–136 (2011)Google Scholar
  19. 19.
    Luo, X., Zhou, P., Chan, E.W.W., Lee, W., Chang, R.K.C., Perdisci, R.: Httpos: Sealing information leaks with browser-side obfuscation of encrypted flows. In: NDSS 2011 (2011)Google Scholar
  20. 20.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007)CrossRefGoogle Scholar
  21. 21.
    Nagaraja, S., Jalaparti, V., Caesar, M., Borisov, N.: P3CA: Private Anomaly Detection Across ISP Networks. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 38–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: IEEE Symposium on Security and Privacy 2009, pp. 173–187 (2009)Google Scholar
  23. 23.
    Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds. In: CCS, pp. 199–212 (2009)Google Scholar
  24. 24.
    Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. on Knowl. and Data Eng. 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  25. 25.
    Saponas, T.S., Agarwal, S.: Devices that tell on you: Privacy trends in consumer ubiquitous computing. In: USENIX 2007, pp. 5:1–1:16 (2007)Google Scholar
  26. 26.
    Sun, J., Zhu, X., Zhang, C., Fang, Y.: Hcpp: Cryptography based secure ehr system for patient privacy and emergency healthcare. In: ICDCS 2011, pp. 373–382 (2011)Google Scholar
  27. 27.
    Sun, Q., Simon, D.R., Wang, Y.M., Russell, W., Padmanabhan, V.N., Qiu, L.: Statistical identification of encrypted web browsing traffic. In: IEEE Symposium on Security and Privacy (2002)Google Scholar
  28. 28.
    Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wen Ming Liu
    • 1
  • Lingyu Wang
    • 1
  • Kui Ren
    • 2
  • Pengsu Cheng
    • 1
  • Mourad Debbabi
    • 1
  1. 1.Concordia Institute for Information Systems EngineeringConcordia UniversityCanada
  2. 2.Department of Electrical and Computer EngineeringIllinois Institute of TechnologyUSA

Personalised recommendations