Advertisement

CLEAN pp 13-51 | Cite as

Well Integrity

  • Kurt M. Reinicke
  • Mingxing Bai
  • Peter Bock
  • Carsten Fichter
  • Zhengmeng Hou
  • Ralph Krebs
  • Hans-Jürgen Kretzschmar
  • Udo Lubenau
  • Robert Meyer
  • Mohsen Rafiee
  • Rico Rockmann
  • Meinhard Schmidt
  • Günter Schmitt
  • Steffen Schmitz
  • Catalin Teodoriu
  • Martina J. Weichmann
  • Falk H. Weinlich
  • Patrick Were
  • Lars Wundram
  • Yucheng Zhang
Chapter
Part of the Advanced Technologies in Earth Sciences book series (ATES)

Abstract

The implementation of an underground CO2 storage requires evidence that the storage is and will remain tight in the future. This refers to the cap rock and the wells penetrating it. Assessment and verification of well integrity of accessible wells is technically possible. The available methods, allowing a direct assessment, were evaluated and a measurement and testing strategy is proposed. Unlike accessible wells, already plugged ones require predictive methods for their assessment. These are based on well information and a comprehensive understanding of the coupled thermal, hydraulic, mechanical and chemical processes during well construction, operation and after abandonment. The methods have been applied to a well zone characterised by conditions typical for the subsurface in the area of interest and with regard to the potential injection site in the Altmark. The calculated safety margins emphasize that technical well integrity of the 12 examined boreholes is given for enhanced gas recovery injecting 100,000 t of CO2 in the Altensalzwedel subfield without a need for any further intervention.

Self-healing of defects was investigated in full-scale experiments under in-situ conditions. In addition to the expected self-healing as a result of salt creep, healing was also observed resulting from the interaction of salt, cement and casing with dry or wet CO2.

Methods and technologies for CO2 well monitoring and intervention presented here are sufficient for the mining safety of CO2 storage wells under high pressure. The system contains technologies proven under field conditions as well as procedures in which CO2 was applied.

An innovative well abandonment concept was developed and tested in the field for the long-term containment of CO2 in depleted Rotliegend gas reservoirs. It aims at amending the conventional standard well abandonment procedure, takes advantage of the natural creeping ability of the thick, homogeneous Zechstein salt formation located at around 3,000 m depth in the Altmark area and consists of four main sealing units: (1) a standard sealing element with cement from the reservoir to the impermeable cap rock, (2) a salt plug created in the formerly reamed section of casing within the plastic Zechstein (Upper Permian) rock salt formation, (3) two bridge plugs at the bottom and top of the salt plug and (4) standard cement sealing elements from the top bridge plug to the ground surface. Comprehensive numerical simulations conducted prior to and during the field test in 2010 and 2011 successfully predicted the evolution of the now proven convergence using downhole measurement data. This new long-term sealing concept has been successfully tested at the Altmark natural gas field.

Keywords

Rock Salt Excavation Damage Zone North German Basin Volume Convergence Zechstein Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdel-Haq A (2006) Erfahrung bei der Durchführung des Dichtheitstestes an den letzten zementierten Rohrtouren der Kavernenfelder EPE und Bad Lauchstädt. 57. Berg- und Hüttenmännischer Tag, 22–23 Juni 2006Google Scholar
  2. Bachu S, Bennion DB (2009) Experimental assessment of brine and/or CO2 leakage through well cements at reservoir conditions. Int J Greenhouse Gas Control 3:494–501CrossRefGoogle Scholar
  3. Barlet-Gouédard V, Rimmelé G, Porcherie O, Quisel N, Desroches J (2009) A solution against well cement degradation under CO2 geological storage environment. Int J Greenhouse Gas Control 3:206–216CrossRefGoogle Scholar
  4. Berest P, Brouard B, Durup G (2002) Tightness tests in salt-cavern wells. Technical paper. Solution Mining Research Institute, Spring 2002 Meeting, 28 April–1 May 2002, Banff. http://brouard-consulting.com/articles/tightness-banff.pdf
  5. Bradshaw RL, Boegly WJ, Empson FM (1964) Correlation of convergence measurements in salt mines with laboratory creep-test data. In: The 6th U.S. symposium on rock mechanics (USRMS), 28–30 Oct 1964, The University of Missouri Rolla, Rolla, pp 501–514Google Scholar
  6. Bruckdorfer RA (1986) Carbon dioxide corrosion in oilwell cements. Society of Petroleum Engineers SPE 15176Google Scholar
  7. Carey JW, Wigand M, Chipera SJ, Wolde-Gabriel G, Pawar R, Lichtner PC, Wehner SC, Raines MA, Guthrie GD Jr (2007) Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA. Intl J Greenhouse Gas Control 1(1):75–85CrossRefGoogle Scholar
  8. Condor J, Asghari K (2009) An alternative theoretical methodology for monitoring the risks of CO2 leakage from wellbores. Energy Procedia 1:2599–2605CrossRefGoogle Scholar
  9. Crow W, Carey JW, Gasda S, Williams DB, Celia M (2010) Wellbore integrity analysis of a natural gas producer. Int J Greenhouse Gas Control 4:186–197CrossRefGoogle Scholar
  10. Fjaer E, Holt RM, Horsrud P, Raaen AM, Risnes R (2008) Petroleum related rock mechanics. Dev Petr Sci 53:299–304Google Scholar
  11. Fuenkajorn K, Daemen JJK (1996) Sealing of boreholes und underground excavations in rock. Chapman & Hall, London, pp 184–211CrossRefGoogle Scholar
  12. Hendricks (2009) Experiences in the Salt Creek Field CO2 flood. In: 5th annual wellbore integrity network, Calgary, 13–14 May 2009Google Scholar
  13. Heusermann S, Lux KH, Rokahr R (1983) Entwicklung mathematisch-mechanischer Modelle zur Beschreibung des Stoffverhaltens von Salzgestein in Abhängigkeit von der Zeit und der Temperatur auf der Grundlage von Laborversuchen mit begleitenden kontinuumsmechanischen Berechnungen nach der Methode der finiten Elemente. BMBF-Forschungsbericht T 83–218. Lehrgebiet Unterirdisches Bauen der Universität HannoverGoogle Scholar
  14. Hou Z (1997) Untersuchungen zum Nachweis der Standsicherheit für Untertagedeponien im Salzgebirge. Dissertation an der TU Clausthal, Papierflieger Verlag in Clausthal-ZellerfeldGoogle Scholar
  15. Hou Z (2002) Geomechanische Planungskonzepte für untertägige Tragwerke mit besonderer Berücksichtigung von Gefügeschädigung, Verheilung und hydromechanischer Kopplung. Habilitationsschrift an der TU Clausthal, Papierflieger Verlag in Clausthal-ZellerfeldGoogle Scholar
  16. Hou Z (2003) Mechanical and hydraulic behaviour of salt in the excavation disturbed zone around underground facilities. Int J Rock Mech Min Sci 40(5):725–738CrossRefGoogle Scholar
  17. Hou Z, Wundram L (2009) Langzeitverschluss der CO2-Entsorgung in einer Erdgaslagerstätte zur Erhöhung der Ausbeutungsrate: Vergleich mit der Endlagerung radioaktiver Abfälle in einem alten Bergwerk. Energie und Rohstoffe, Goslar, 9–12 Sept 2009, pp 317–334Google Scholar
  18. Hou Z, Wang Q, Xie L, Liu J, Zhang R (2010) The Hou’s short- and long-term strength model, the Hou/Lux constitutive model for rock salt as well as their applications in storage cavern design. In: Hou Z, Xie H, Yoon JS (eds) Underground storage of CO2 and energy. CRC Press/Balkema, Leiden, pp 95–103CrossRefGoogle Scholar
  19. ITE (2007) Feasibility study on the potential of CO2 storage for enhancing recovery in mature German gas reservoirs (CSEGR) – work package 2: CO2 injection/production and well integrity. Beitrag zum Abschlussbericht des Gemeinschaftsvorhabens unter dem BMBF Sonderprogramm GEOTECHNOLOGIENGoogle Scholar
  20. Jacobsen S, Marchand J, Gerard B (1998) Concrete cracks І: durability and self healing. In: Gjorv OE, Sakai K, Banthia NE (eds) Proceedings of the second international conference on concrete under severe conditions. E & FN Spon, Tromso, pp 217–231Google Scholar
  21. Krilov Z, Loncaric B, Miksa Z (2000) Investigation of a long-term cement deterioration under a high temperature sour gas downhole environment, Society of Petroleum Engineers. The 2000 SPE international symposium on formation damage control, Lafayette, 23–24 Feb 2000, Paper no. SPE 58771, pp 547–555Google Scholar
  22. Mazurek M, Pearson FJ, Volckaert G, Bock H (2003) Features, events and processes evaluation catalogue for argillaceous media. Radioactive Waste Management, ISBN 92-64-02148-5. © OECD 2003Google Scholar
  23. Nygaard R (2010) Well design and well integrity, Wabamun area CO2 sequestration project (WASP), Energy and Environmental Systems Group, Institute Sustainable Energy, Environment and Economy (ISEEE), University of Calgary, p 39Google Scholar
  24. Quintessa (2011) CO2 FEP data base. http://www.quintessa-online.com/co2/
  25. Reinicke KM, Fichter C (2009) CO2 Lagerung im Geogrund: Bohrungsintegrität akzeptabel für CSEGR (carbon sequestration with enhanced gas recovery) Part 1 and 2. Erdöl-Erdgas-Kohle, Januar und Februar 2009Google Scholar
  26. Reinicke KM, Fichter C (2010a) Measurement strategies to evaluate the integrity of deep wells for CO2 applications. Proceedings of the Sino-German conference on underground storage of CO2 and energy, Beijing, 6–13 July 2010Google Scholar
  27. Reinicke KM, Fichter C (2010b) Entwicklung von Prüfstrategien zur Bewertung der technischen Integrität von Bohrungen. DGMK/ÖGEW-Frühjahrstagung 2010, Fachbereich Aufsuchung und Gewinnung, Celle, 12–13 Apr 2010Google Scholar
  28. Reinicke KM, Weichmann MJ (2011) Risikobewertung verfüllter Bohrungen unter dem Einfluss von CO2. Freiberger Forschungsforum 2011, 8. Fachkolloquium GEO Förderung und Speicherung von Energie im Untergrund, 15–17 Juni 2011Google Scholar
  29. Reinicke KM, Franz O, Fichter C (2009a) Bohrungsintegrität akzeptabel für CSEGR CO2-Lagerung im Geountergrund (1). Erdöl Erdgas Kohle 125(1):27–31Google Scholar
  30. Reinicke KM, Franz O, Fichter C (2009b) Bohrungsintegrität akzeptabel für CSEGR CO2-Lagerung im Geountergrund (2). Erdöl Erdgas Kohle 125(2):66–67Google Scholar
  31. Reinicke KM, Bai M, Fichter C, Weichmann MJ, Weinlich FH (2011a) Leckagerisiko von Bohrungen unter Einfluss von CO2: Von den FEPs bis zu den Szenarien. DGMK/ÖGEW-Frühjahrstagung 2011, Celle, 11–12 Apr 2011Google Scholar
  32. Reinicke KM, Teodoriu C, Fichter C, Weichmann MJ, Weinlich FH, Krebs R, Zhang Z-L (2011b) Untersuchung von Selbstheilungsmechanismen im Verbundsystem Rohr-Zement-Gebirge von CO2-Bohrungen. DGMK/ÖGEW-Frühjahrstagung 2011, Celle, 11–12 Apr 2011Google Scholar
  33. Schlangen E, Rooij M de (2005) Self-healing phenomena in cement-based materials. International union of laboratories & experts in construction materials, systems and structures, technical committee 221-SHC. http://www.rilem.net/gene/main.php?base=8750%26gp_id=228
  34. Schmitt G, Zhang Y, Gao K (2011a) Water effect on steel corrosion under supercritical CO2 conditions, NACE CORROSION’2011, Houston, 13–17 Mar 2011, Paper 11378Google Scholar
  35. Schmitt G, Zhang Y, Gao K (2011b) Water effect on steel corrosion under supercritical CO2 conditions. Mater Perform 50(6):62Google Scholar
  36. Schmitt G, Zhang Y, Gao K (2011c) Inhibition of steel corrosion under aqueous supercritical CO2 conditions, NACE CORROSION’2011, Houston, 13–17 Mar 2011, Paper 11379Google Scholar
  37. Schmitt G, Zhang Y, Gao K (2011d) Inhibition of steel corrosion under aqueous supercritical CO2 conditions. Mater Perform 50(9):54Google Scholar
  38. Schmitt G, Zhang Y, Gao K (2011e) Corrosion inhibition of steels in aqueous media in contact with supercritical carbon dioxide, EUROCORR’2011, 4–8 Sept. 2011, Stockholm, Paper 4717Google Scholar
  39. Schmitt G, Zhang Y, Gao K (2011f) Effect of oxygen on steel corrosion under supercritical CO2 conditions, EUROCORR’2011, 4–8 Sept. 2011, Stockholm, Paper 1103Google Scholar
  40. Schmitt G, Zhang Y, Gao K (2011g) Corrosion inhibition of CRAs in systems with supercritical carbon dioxide, 18th international corrosion congress, 20–24 Nov 2011, Perth, Paper 82Google Scholar
  41. Schmitt G (2011h) Stähle in überkritischen CO2 Systemen – Unerwarteter Sauerstoff-Effekt, GfKORR-Workshop: CCS-Technologie – Werkstofffragen prozesstechnisch lösen, 14 Dec 2011, DECHEMA, Frankfurt/MainGoogle Scholar
  42. Schmitt G, Zhang Y, Gao K, Hausler RH (2012) Modeling steel corrosion under supercritical CO2 conditions. Mater Corrosion 63(2). doi: 10.1002/maco.201106382, in press
  43. Siemann MG (2007) Herkunft und Migration mineralgebundener Gase der Zechstein 2 Schichten in Zielitz. Kali Steinsalz 3:26–41Google Scholar
  44. Sjaardema GD, Krieg RD (1987) A constitutive model for the consolidation of crushed salt and its use in analyses of backfilled shaft and drift configurations. SAND87-1977. Sandia National Laboratories, AlbuquerqueGoogle Scholar
  45. SMRI (1996) SMRI reference for external well mechanical integrity testing/performance, data evaluation and assessment; SMRI Spring meeting, Crotogino F., Short Class, HoustonGoogle Scholar
  46. Teodoriu C, Reinicke KM, Fichter C, Wehling P (2010) Investigations on casing-cement interaction with application to gas and CO2 storage wells. SPE 131336, 2010 EAGE/SPE EUROPEC, 14–17 June 2010, BarcelonaGoogle Scholar
  47. Tran Viet T (2010) Bewertung Technische Integrität: Bewertung bestehender Verfahren, In: CLEAN Zwischenbericht Dezember 2009 und CLEAN Jahrestreffen Januar 2010Google Scholar
  48. Williams S, Carlsen T, Constable K, Guldahl G (2009) Identification and qualification of shale annular barriers using wireline logs during plug and abandonment operations. SPE/IADC 119321, SPE Well Abandonment, Aberdeen, 30 June 2009. http://www.spe-uk.org/Downloads/Well-Abandonment-09/1530_Shale_Annular_Barriers_E_Gudding_StatoilHydro.pdf
  49. Zhang C-L, Müller J, Ziesche U (2011) Untersuchungen zur Integrität von Rohr-Zement-Salz. Teilprojekt des Verbundvorhabens EGR Altmark CO2SAFE. Unveröffentlichter GRS-Laborbericht im Auftrage des ITE (TUC)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kurt M. Reinicke
    • 1
  • Mingxing Bai
    • 1
  • Peter Bock
    • 2
  • Carsten Fichter
    • 1
  • Zhengmeng Hou
    • 1
  • Ralph Krebs
    • 1
    • 3
  • Hans-Jürgen Kretzschmar
    • 2
  • Udo Lubenau
    • 2
  • Robert Meyer
    • 4
  • Mohsen Rafiee
    • 2
  • Rico Rockmann
    • 2
  • Meinhard Schmidt
    • 4
  • Günter Schmitt
    • 5
  • Steffen Schmitz
    • 2
  • Catalin Teodoriu
    • 1
  • Martina J. Weichmann
    • 1
  • Falk H. Weinlich
    • 1
  • Patrick Were
    • 1
  • Lars Wundram
    • 1
  • Yucheng Zhang
    • 5
  1. 1.Institute of Petroleum Engineering (ITE)Clausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.DBI Gastrechnologisches Institut gGmbHFreibergGermany
  3. 3.DBE TECHNOLOGY GmbHPeineGermany
  4. 4.GDF SUEZ E&P Deutschland GmbHLingenGermany
  5. 5.IFINKOR-Institut für Instandhaltung und Korrosionsschutztechnik gGmbHIserlohnGermany

Personalised recommendations