Limits of Computational Explanation of Cognition

  • Marcin Miłkowski
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 5)


In this chapter, I argue that some aspects of cognitive phenomena cannot be explained computationally. In the first part, I sketch a mechanistic account of computational explanation that spans multiple levels of organization of cognitive systems. In the second part, I turn my attention to what cannot be explained about cognitive systems in this way. I argue that information-processing mechanisms are indispensable in explanations of cognitive phenomena, and this vindicates the computational explanation of cognition. At the same time, it has to be supplemented with other explanations to make the mechanistic explanation complete, and that naturally leads to explanatory pluralism in cognitive science. The price to pay for pluralism, however, is the abandonment of the traditional autonomy thesis asserting that cognition is independent of implementation details.


Cognitive Science Cognitive System Turing Machine Mechanistic Explanation Formal Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M.L., Rosenberg, G.: Content and action: The guidance theory of representation. Journal of Mind and Behavior 29(1-2), 55–86 (2008)Google Scholar
  2. Barandiaran, X., Moreno, A.: Adaptivity: From Metabolism to Behavior. Adaptive Behavior 16(5), 325–344 (2008)CrossRefGoogle Scholar
  3. Bechtel, W.: Mental Mechanisms. Routledge, New York (2008)Google Scholar
  4. Beer, R.D.: Dynamical approaches to cognitive science. Trends in Cognitive Sciences 4(3), 91–99 (2000)MathSciNetCrossRefGoogle Scholar
  5. Bickhard, M.H., Terveen, L.: Foundational issues in artificial intelligence and cognitive science: Impasse and solution. North-Holland (1995)Google Scholar
  6. Cantwell Smith, B.: The foundations of computing. In: Scheutz, M. (ed.) Computationalism: New Directions. MIT Press (2002)Google Scholar
  7. Chrisley, R.: Transparent computationalism. In: Scheutz, M. (ed.) New Computationalism, pp. 105–121. Academia Verlag, Sankt Augustin (2000)Google Scholar
  8. Clark, A.: Mindware: An introduction to the philosophy of cognitive science. Oxford University Press, Oxford (2001)Google Scholar
  9. Conklin, J., Eliasmith, C.: A controlled attractor network model of path integration in the rat. Journal of Computational Neuroscience 18(2), 183–203 (2005)MathSciNetCrossRefGoogle Scholar
  10. Craik, K.: The Nature of Explanation. Cambridge University Press, Cambridge (1943)Google Scholar
  11. Craver, C.F.: Explaining the Brain. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  12. Cutland, N.: Computability. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  13. Dennett, D.C.: The Intentional Stance. MIT Press, Cambridge (1987)Google Scholar
  14. Dreyfus, H.: What Computers Can’t Do. Harper & Row, New York (1972)Google Scholar
  15. Eliasmith, C.: How we ought to describe computation in the brain. Studies In History and Philosophy of Science Part A 41(3), 313–320 (2010)CrossRefGoogle Scholar
  16. Elman, J.: Finding structure in time. Cognitive Science 14(2), 179–211 (1990)CrossRefGoogle Scholar
  17. Elman, J.: Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning 7(2-3), 195–225 (1991)CrossRefGoogle Scholar
  18. Fodor, J.A.: The Language of Thought, 1st edn. Thomas Y. Crowell Company, New York (1975)Google Scholar
  19. Fodor, J.A.: Methodological Solipsism Considered as a Research Strategy in Cognitive Psychology. Behavioral and Brain Sciences III (1), 63–72 (1980)CrossRefGoogle Scholar
  20. Fresco, N.: Explaining Computation Without Semantics: Keeping it Simple. Minds and Machines 20(2), 165–181 (2010), doi:10.1007/s11023-010-9199-6.CrossRefGoogle Scholar
  21. Gomila, A.: Mending or Abandoning Cognitivism? In: Glenberg, A., de Vega, M., Glaesser, A. (eds.) Symbols, Embodiment and Meaning, pp. 357–374. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
  22. Grush, R.: The emulation theory of representation: motor control, imagery, and perception. The Behavioral and brain sciences 27(3), 377–396 (2004)Google Scholar
  23. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)CrossRefGoogle Scholar
  24. Lund, H.H., Webb, B., Hallam, J.: A robot attracted to the cricket species Gryllus Bimaculatus. In: Husbands, P., Harvey, I. (eds.) Fourth European Conference on Artificial Life. MIT Press (1997)Google Scholar
  25. Machamer, P., Darden, L., Craver, C.F.: Thinking about Mechanisms. Philosophy of Science 67(1), 1–25 (2000)MathSciNetCrossRefGoogle Scholar
  26. Marr, D.: Vision. W. H. Freeman and Company, New York (1982)Google Scholar
  27. Maturana, H.R., Varela, F.J.: Autopoiesis and cognition. Reidel, Dordrecht (1980)CrossRefGoogle Scholar
  28. Meyer, D.E., Osman, A.M., Irwin, D.E., Yantis, S.: Modern mental chronometry. Biological Psychology 26(1-3), 3–67 (1988)CrossRefGoogle Scholar
  29. Miłkowski, M.: Is computationalism trivial? In: Dodig Crnkovic, G., Stuart, S. (eds.) Computation, Information, Cognition, pp. 236–246. Cambridge Scholars Press, Newcastle (2007)Google Scholar
  30. Miłkowski, M.: Explaining the Computational Mind. MIT Press, Cambridge (forthcoming)Google Scholar
  31. Newell, A., Simon, H.A.: Human problem solving. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  32. Newell, A.: You can’t play 20 questions with nature and win. In: Chase, W.G. (ed.) Visual Information Processing, pp. 283–308. Academic Press, New York (1973)Google Scholar
  33. O’Reilly, R.C.: Biologically based computational models of high-level cognition. Science 314(5796), 91–94 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  34. Piccinini, G.: Computation without Representation. Philosophical Studies 137(2), 205–241 (2006), doi:10.1007/s11098-005-5385-4MathSciNetCrossRefGoogle Scholar
  35. Piccinini, G.: Computing Mechanisms. Philosophy of Science 74(4), 501–526 (2007)MathSciNetCrossRefGoogle Scholar
  36. Piccinini, G., Scarantino, A.: Information processing, computation, and cognition. Journal of Biological Physics 37(1), 1–38 (2010)CrossRefGoogle Scholar
  37. Piccinini, G., Craver, C.: Integrating psychology and neuroscience: functional analyses as mechanism sketches. Synthese 183(3), 283–311 (2011)CrossRefGoogle Scholar
  38. Pylyshyn, Z.W.: Computation and cognition. MIT Press, Cambridge (1984)Google Scholar
  39. Rusanen, A.M., Lappi, O.: The Limits of Mechanistic Explanation in Neurocognitive Sciences. In: Proceedings of the European Cognitive Science Conference 2007. Lawrence Erlbaum Associates (2007)Google Scholar
  40. Siegelmann, H.: Analog computation via neural networks. Theoretical Computer Science 131(2), 331–360 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  41. Thelen, E., Schöner, G., Scheier, C., Smith, L.B.: The dynamics of embodiment: a field theory of infant perseverative reaching. The Behavioral and Brain Sciences 24(1), 1–34 (2001)CrossRefGoogle Scholar
  42. Van Gelder, T.: What might cognition be, if not computation? The Journal of Philosophy 92(7), 345–381 (1995)CrossRefGoogle Scholar
  43. Vakarelov, O.: The cognitive agent: Overcoming informational limits. Adaptive Behavior 19(2), 83–100 (2011)CrossRefGoogle Scholar
  44. Walmsley, J.: Explanation in Dynamical Cognitive Science. Minds and Machines 18(3), 331–348 (2008)CrossRefGoogle Scholar
  45. Webb, B., Scutt, T.: A simple latency-dependent spiking-neuron model of cricket phonotaxis. Biological Cybernetics 82(3), 247–269 (2000)CrossRefGoogle Scholar
  46. Webb, B.: Using robots to model animals: a cricket test. Robotics and Autonomous Systems 16(2-4), 117–134 (1995)CrossRefGoogle Scholar
  47. Webb, B.: Using robots to understand animal behavior. Advances in the Study of Behavior 38, 1–58 (2008)CrossRefGoogle Scholar
  48. Wheeler, M.: Reconstructing the Cognitive World. MIT Press, Cambridge (2005)Google Scholar
  49. Zednik, C.: The Nature of Dynamical Explanation. Philosophy of Science 78(2), 238–263 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Philosophy and SociologyPolish Academy of SciencesWarsawPoland

Personalised recommendations